These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
184 related articles for article (PubMed ID: 32251730)
21. Beyond the Biosynthetic Gene Cluster Paradigm: Genome-Wide Coexpression Networks Connect Clustered and Unclustered Transcription Factors to Secondary Metabolic Pathways. Kwon MJ; Steiniger C; Cairns TC; Wisecaver JH; Lind AL; Pohl C; Regner C; Rokas A; Meyer V Microbiol Spectr; 2021 Oct; 9(2):e0089821. PubMed ID: 34523946 [TBL] [Abstract][Full Text] [Related]
22. Development of sexual structures influences metabolomic and transcriptomic profiles in Aspergillus flavus. Luis JM; Carbone I; Mack BM; Lebar MD; Cary JW; Gilbert MK; Bhatnagar D; Wientjes CC; Payne GA; Moore GG; Ameen YO; Ojiambo PS Fungal Biol; 2022 Mar; 126(3):187-200. PubMed ID: 35183336 [TBL] [Abstract][Full Text] [Related]
23. The PHD Transcription Factor Rum1 Regulates Morphogenesis and Aflatoxin Biosynthesis in Hu Y; Yang G; Zhang D; Liu Y; Li Y; Lin G; Guo Z; Wang S; Zhuang Z Toxins (Basel); 2018 Jul; 10(7):. PubMed ID: 30036940 [No Abstract] [Full Text] [Related]
24. Aspergillus flavus VelB acts distinctly from VeA in conidiation and may coordinate with FluG to modulate sclerotial production. Chang PK; Scharfenstein LL; Li P; Ehrlich KC Fungal Genet Biol; 2013; 58-59():71-9. PubMed ID: 23994319 [TBL] [Abstract][Full Text] [Related]
25. Mutations in AraR leading to constitutive expression of arabinolytic genes in Aspergillus niger under derepressing conditions [corrected]. Reijngoud J; Deseke M; Halbesma ETM; Alazi E; Arentshorst M; Punt PJ; Ram AFJ Appl Microbiol Biotechnol; 2019 May; 103(10):4125-4136. PubMed ID: 30963207 [TBL] [Abstract][Full Text] [Related]
26. Highly efficient gene targeting in Aspergillus oryzae industrial strains under ligD mutation introduced by genome editing: Strain-specific differences in the effects of deleting EcdR, the negative regulator of sclerotia formation. Nakamura H; Katayama T; Okabe T; Iwashita K; Fujii W; Kitamoto K; Maruyama JI J Gen Appl Microbiol; 2017 Jul; 63(3):172-178. PubMed ID: 28484116 [TBL] [Abstract][Full Text] [Related]
27. Functional analysis of hydrophobin genes in sexual development of Botrytis cinerea. Terhem RB; van Kan JA Fungal Genet Biol; 2014 Oct; 71():42-51. PubMed ID: 25181040 [TBL] [Abstract][Full Text] [Related]
28. Morphological transitions governed by density dependence and lipoxygenase activity in Aspergillus flavus. Horowitz Brown S; Zarnowski R; Sharpee WC; Keller NP Appl Environ Microbiol; 2008 Sep; 74(18):5674-85. PubMed ID: 18658287 [TBL] [Abstract][Full Text] [Related]
29. The Zn(II)2Cys6 putative transcription factor NosA controls fruiting body formation in Aspergillus nidulans. Vienken K; Fischer R Mol Microbiol; 2006 Jul; 61(2):544-54. PubMed ID: 16780567 [TBL] [Abstract][Full Text] [Related]
30. Involvement of an SRF-MADS protein McmA in regulation of extracellular enzyme production and asexual/sexual development in Aspergillus nidulans. Li N; Kunitake E; Endo Y; Aoyama M; Kanamaru K; Kimura M; Kato M; Kobayashi T Biosci Biotechnol Biochem; 2016 Sep; 80(9):1820-8. PubMed ID: 26967516 [TBL] [Abstract][Full Text] [Related]
31. An Evolutionarily Conserved Transcriptional Activator-Repressor Module Controls Expression of Genes for D-Galacturonic Acid Utilization in Aspergillus niger. Niu J; Alazi E; Reid ID; Arentshorst M; Punt PJ; Visser J; Tsang A; Ram AF Genetics; 2017 Jan; 205(1):169-183. PubMed ID: 28049705 [TBL] [Abstract][Full Text] [Related]
32. Comparative proteomic analysis reveals the regulatory network of the Liu H; Sang S; Wang H; Ren X; Tan Y; Chen W; Liu Z; Liu Y Biosci Rep; 2018 Aug; 38(4):. PubMed ID: 29773679 [No Abstract] [Full Text] [Related]
33. The nsdD gene encodes a putative GATA-type transcription factor necessary for sexual development of Aspergillus nidulans. Han KH; Han KY; Yu JH; Chae KS; Jahng KY; Han DM Mol Microbiol; 2001 Jul; 41(2):299-309. PubMed ID: 11489119 [TBL] [Abstract][Full Text] [Related]
34. SclR, a basic helix-loop-helix transcription factor, regulates hyphal morphology and promotes sclerotial formation in Aspergillus oryzae. Jin FJ; Takahashi T; Matsushima K; Hara S; Shinohara Y; Maruyama J; Kitamoto K; Koyama Y Eukaryot Cell; 2011 Jul; 10(7):945-55. PubMed ID: 21551246 [TBL] [Abstract][Full Text] [Related]
35. The FlbA-regulated predicted transcription factor Fum21 of Aspergillus niger is involved in fumonisin production. Aerts D; Hauer EE; Ohm RA; Arentshorst M; Teertstra WR; Phippen C; Ram AFJ; Frisvad JC; Wösten HAB Antonie Van Leeuwenhoek; 2018 Mar; 111(3):311-322. PubMed ID: 28965153 [TBL] [Abstract][Full Text] [Related]
36. Transcriptomic profiles of Aspergillus flavus CA42, a strain that produces small sclerotia, by decanal treatment and after recovery. Chang PK; Scharfenstein LL; Mack B; Yu J; Ehrlich KC Fungal Genet Biol; 2014 Jul; 68():39-47. PubMed ID: 24780887 [TBL] [Abstract][Full Text] [Related]
37. Characterizing the role of Zn cluster family transcription factor ZcfA in governing development in two Aspergillus species. Son YE; Cho HJ; Lee MK; Park HS PLoS One; 2020; 15(2):e0228643. PubMed ID: 32017793 [TBL] [Abstract][Full Text] [Related]
38. Characterization of the Aspergillus niger prtT, a unique regulator of extracellular protease encoding genes. Punt PJ; Schuren FH; Lehmbeck J; Christensen T; Hjort C; van den Hondel CA Fungal Genet Biol; 2008 Dec; 45(12):1591-9. PubMed ID: 18930158 [TBL] [Abstract][Full Text] [Related]
39. The GATA-type IVb zinc-finger transcription factor SsNsd1 regulates asexual-sexual development and appressoria formation in Sclerotinia sclerotiorum. Li J; Mu W; Veluchamy S; Liu Y; Zhang Y; Pan H; Rollins JA Mol Plant Pathol; 2018 Jul; 19(7):1679-1689. PubMed ID: 29227022 [TBL] [Abstract][Full Text] [Related]
40. Deletion of the Delta12-oleic acid desaturase gene of a nonaflatoxigenic Aspergillus parasiticus field isolate affects conidiation and sclerotial development. Chang PK; Wilson RA; Keller NP; Cleveland TE J Appl Microbiol; 2004; 97(6):1178-84. PubMed ID: 15546408 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]