These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

221 related articles for article (PubMed ID: 32251781)

  • 1. Rapid bone repair with the recruitment of CD206
    Castaño IM; Raftery RM; Chen G; Cavanagh B; Quinn B; Duffy GP; O'Brien FJ; Curtin CM
    Acta Biomater; 2020 Jun; 109():267-279. PubMed ID: 32251781
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dual scaffold delivery of miR-210 mimic and miR-16 inhibitor enhances angiogenesis and osteogenesis to accelerate bone healing.
    Castaño IM; Raftery RM; Chen G; Cavanagh B; Quinn B; Duffy GP; Curtin CM; O'Brien FJ
    Acta Biomater; 2023 Dec; 172():480-493. PubMed ID: 37797708
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Harnessing an Inhibitory Role of miR-16 in Osteogenesis by Human Mesenchymal Stem Cells for Advanced Scaffold-Based Bone Tissue Engineering.
    Mencía Castaño I; Curtin CM; Duffy GP; O'Brien FJ
    Tissue Eng Part A; 2019 Jan; 25(1-2):24-33. PubMed ID: 29490603
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Next generation bone tissue engineering: non-viral miR-133a inhibition using collagen-nanohydroxyapatite scaffolds rapidly enhances osteogenesis.
    Mencía Castaño I; Curtin CM; Duffy GP; O'Brien FJ
    Sci Rep; 2016 Jun; 6():27941. PubMed ID: 27297802
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Inhibition of COX1/2 alters the host response and reduces ECM scaffold mediated constructive tissue remodeling in a rodent model of skeletal muscle injury.
    Dearth CL; Slivka PF; Stewart SA; Keane TJ; Tay JK; Londono R; Goh Q; Pizza FX; Badylak SF
    Acta Biomater; 2016 Feb; 31():50-60. PubMed ID: 26612417
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Development of miR-26a-activated scaffold to promote healing of critical-sized bone defects through angiogenic and osteogenic mechanisms.
    Sadowska JM; Ziminska M; Ferreira C; Matheson A; Balouch A; Bogle J; Wojda S; Redmond J; Elkashif A; Dunne N; McCarthy HO; Donahue S; O'Brien FJ
    Biomaterials; 2023 Dec; 303():122398. PubMed ID: 37979514
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Development of a Gene-Activated Scaffold Incorporating Multifunctional Cell-Penetrating Peptides for pSDF-1α Delivery for Enhanced Angiogenesis in Tissue Engineering Applications.
    Power RN; Cavanagh BL; Dixon JE; Curtin CM; O'Brien FJ
    Int J Mol Sci; 2022 Jan; 23(3):. PubMed ID: 35163379
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A Biomimetic Hierarchical Nanointerface Orchestrates Macrophage Polarization and Mesenchymal Stem Cell Recruitment To Promote Endogenous Bone Regeneration.
    Jin SS; He DQ; Luo D; Wang Y; Yu M; Guan B; Fu Y; Li ZX; Zhang T; Zhou YH; Wang CY; Liu Y
    ACS Nano; 2019 Jun; 13(6):6581-6595. PubMed ID: 31125522
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The promotion of bone regeneration through CS/GP-CTH/antagomir-133a/b sustained release system.
    Jiang F; Yin F; Lin Y; Xia W; Zhou L; Pan C; Wang N; Shan H; Zhou Z; Yu X
    Nanomedicine; 2020 Feb; 24():102116. PubMed ID: 31672602
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Translating the role of osteogenic-angiogenic coupling in bone formation: Highly efficient chitosan-pDNA activated scaffolds can accelerate bone regeneration in critical-sized bone defects.
    Raftery RM; Mencía Castaño I; Chen G; Cavanagh B; Quinn B; Curtin CM; Cryan SA; O'Brien FJ
    Biomaterials; 2017 Dec; 149():116-127. PubMed ID: 29024837
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Rapid healing of a critical-sized bone defect using a collagen-hydroxyapatite scaffold to facilitate low dose, combinatorial growth factor delivery.
    Walsh DP; Raftery RM; Chen G; Heise A; O'Brien FJ; Cryan SA
    J Tissue Eng Regen Med; 2019 Oct; 13(10):1843-1853. PubMed ID: 31306563
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An "all-in-one" scaffold targeting macrophages to direct endogenous bone repair in situ.
    Niu Y; Wang L; Yu N; Xing P; Wang Z; Zhong Z; Feng Y; Dong L; Wang C
    Acta Biomater; 2020 Jul; 111():153-169. PubMed ID: 32447062
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A novel collagen-nanohydroxyapatite microRNA-activated scaffold for tissue engineering applications capable of efficient delivery of both miR-mimics and antagomiRs to human mesenchymal stem cells.
    Mencía Castaño I; Curtin CM; Shaw G; Murphy JM; Duffy GP; O'Brien FJ
    J Control Release; 2015 Feb; 200():42-51. PubMed ID: 25550154
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mineralized Collagen Regulates Macrophage Polarization During Bone Regeneration.
    Sun Y; Liu S; Fu Y; Kou XX; He DQ; Wang GN; Fu CC; Liu Y; Zhou YH
    J Biomed Nanotechnol; 2016 Nov; 12(11):2029-40. PubMed ID: 29364617
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Delivery of the improved BMP-2-Advanced plasmid DNA within a gene-activated scaffold accelerates mesenchymal stem cell osteogenesis and critical size defect repair.
    Raftery RM; Mencía-Castaño I; Sperger S; Chen G; Cavanagh B; Feichtinger GA; Redl H; Hacobian A; O'Brien FJ
    J Control Release; 2018 Aug; 283():20-31. PubMed ID: 29782946
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Investigation of angiogenesis in bioactive 3-dimensional poly(d,l-lactide-co-glycolide)/nano-hydroxyapatite scaffolds by in vivo multiphoton microscopy in murine calvarial critical bone defect.
    Li J; Xu Q; Teng B; Yu C; Li J; Song L; Lai YX; Zhang J; Zheng W; Ren PG
    Acta Biomater; 2016 Sep; 42():389-399. PubMed ID: 27326916
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evaluation of zinc-doped mesoporous hydroxyapatite microspheres for the construction of a novel biomimetic scaffold optimized for bone augmentation.
    Yu W; Sun TW; Qi C; Ding Z; Zhao H; Zhao S; Shi Z; Zhu YJ; Chen D; He Y
    Int J Nanomedicine; 2017; 12():2293-2306. PubMed ID: 28392688
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Repair of critical-sized bone defects with anti-miR-31-expressing bone marrow stromal stem cells and poly(glycerol sebacate) scaffolds.
    Deng Y; Bi X; Zhou H; You Z; Wang Y; Gu P; Fan X
    Eur Cell Mater; 2014 Jan; 27():13-24; discussion 24-5. PubMed ID: 24425157
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Gene activated scaffolds incorporating star-shaped polypeptide-pDNA nanomedicines accelerate bone tissue regeneration
    Walsh DP; Raftery RM; Murphy R; Chen G; Heise A; O'Brien FJ; Cryan SA
    Biomater Sci; 2021 Jul; 9(14):4984-4999. PubMed ID: 34086016
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Controlled release of vascular endothelial growth factor from spray-dried alginate microparticles in collagen-hydroxyapatite scaffolds for promoting vascularization and bone repair.
    Quinlan E; López-Noriega A; Thompson EM; Hibbitts A; Cryan SA; O'Brien FJ
    J Tissue Eng Regen Med; 2017 Apr; 11(4):1097-1109. PubMed ID: 25783558
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.