BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 32251922)

  • 1. Production of low-alcohol Huangjiu with improved acidity and reduced levels of higher alcohols by fermentation with scarless ALD6 overexpression yeast.
    Zheng N; Jiang S; He Y; Chen Y; Zhang C; Guo X; Ma L; Xiao D
    Food Chem; 2020 Aug; 321():126691. PubMed ID: 32251922
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Reduced Production of Higher Alcohols by Saccharomyces cerevisiae in Red Wine Fermentation by Simultaneously Overexpressing BAT1 and Deleting BAT2.
    Ma L; Huang S; Du L; Tang P; Xiao D
    J Agric Food Chem; 2017 Aug; 65(32):6936-6942. PubMed ID: 28721728
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of GPD1 overexpression in Saccharomyces cerevisiae commercial wine yeast strains lacking ALD6 genes.
    Cambon B; Monteil V; Remize F; Camarasa C; Dequin S
    Appl Environ Microbiol; 2006 Jul; 72(7):4688-94. PubMed ID: 16820460
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Regulation of Saccharomyces cerevisiae genetic engineering on the production of acetate esters and higher alcohols during Chinese Baijiu fermentation.
    Li W; Wang JH; Zhang CY; Ma HX; Xiao DG
    J Ind Microbiol Biotechnol; 2017 Jun; 44(6):949-960. PubMed ID: 28176138
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Decreased production of higher alcohols by Saccharomyces cerevisiae for Chinese rice wine fermentation by deletion of Bat aminotransferases.
    Zhang CY; Qi YN; Ma HX; Li W; Dai LH; Xiao DG
    J Ind Microbiol Biotechnol; 2015 Apr; 42(4):617-25. PubMed ID: 25616436
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Improving ethanol yield in acetate-reducing Saccharomyces cerevisiae by cofactor engineering of 6-phosphogluconate dehydrogenase and deletion of ALD6.
    Papapetridis I; van Dijk M; Dobbe AP; Metz B; Pronk JT; van Maris AJ
    Microb Cell Fact; 2016 Apr; 15():67. PubMed ID: 27118055
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of the Deletion of Genes Related to Amino Acid Metabolism on the Production of Higher Alcohols by
    Wang YP; Wei XQ; Guo XW; Xiao DG
    Biomed Res Int; 2020; 2020():6802512. PubMed ID: 33204707
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Functional improvement of Saccharomyces cerevisiae to reduce volatile acidity in wine.
    Luo Z; Walkey CJ; Madilao LL; Measday V; Van Vuuren HJ
    FEMS Yeast Res; 2013 Aug; 13(5):485-94. PubMed ID: 23692528
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Construction of self-cloning, indigenous wine strains of Saccharomyces cerevisiae with enhanced glycerol and glutathione production.
    Hao RY; Liu YL; Wang ZY; Zhang BR
    Biotechnol Lett; 2012 Sep; 34(9):1711-7. PubMed ID: 22648686
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Engineering of 2,3-butanediol dehydrogenase to reduce acetoin formation by glycerol-overproducing, low-alcohol Saccharomyces cerevisiae.
    Ehsani M; Fernández MR; Biosca JA; Julien A; Dequin S
    Appl Environ Microbiol; 2009 May; 75(10):3196-205. PubMed ID: 19329666
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of NADH-preferring xylose reductase expression on ethanol production from xylose in xylose-metabolizing recombinant Saccharomyces cerevisiae.
    Lee SH; Kodaki T; Park YC; Seo JH
    J Biotechnol; 2012 Apr; 158(4):184-91. PubMed ID: 21699927
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Primary and Secondary Metabolic Effects of a Key Gene Deletion (Δ
    Chen Y; Wang Y; Liu M; Qu J; Yao M; Li B; Ding M; Liu H; Xiao W; Yuan Y
    Appl Environ Microbiol; 2019 Apr; 85(7):. PubMed ID: 30683746
    [No Abstract]   [Full Text] [Related]  

  • 13. Bat2p is essential in Saccharomyces cerevisiae for fusel alcohol production on the non-fermentable carbon source ethanol.
    Schoondermark-Stolk SA; Tabernero M; Chapman J; Ter Schure EG; Verrips CT; Verkleij AJ; Boonstra J
    FEMS Yeast Res; 2005 May; 5(8):757-66. PubMed ID: 15851104
    [TBL] [Abstract][Full Text] [Related]  

  • 14. PGK1 Promoter Library for the Regulation of Acetate Ester Production in Saccharomyces cerevisiae during Chinese Baijiu Fermentation.
    Cui DY; Zhang Y; Xu J; Zhang CY; Li W; Xiao DG
    J Agric Food Chem; 2018 Jul; 66(28):7417-7427. PubMed ID: 29939025
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Upregulation of ALD3 and GPD1 in Saccharomyces cerevisiae during Icewine fermentation.
    Pigeau GM; Inglis DL
    J Appl Microbiol; 2005; 99(1):112-25. PubMed ID: 15960671
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Identification of target genes to control acetate yield during aerobic fermentation with Saccharomyces cerevisiae.
    Curiel JA; Salvadó Z; Tronchoni J; Morales P; Rodrigues AJ; Quirós M; Gonzalez R
    Microb Cell Fact; 2016 Sep; 15(1):156. PubMed ID: 27627879
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Genetic engineering to alter carbon flux for various higher alcohol productions by Saccharomyces cerevisiae for Chinese Baijiu fermentation.
    Li W; Chen SJ; Wang JH; Zhang CY; Shi Y; Guo XW; Chen YF; Xiao DG
    Appl Microbiol Biotechnol; 2018 Feb; 102(4):1783-1795. PubMed ID: 29305698
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Biocontrol of Brettanomyces/Dekkera bruxellensis in alcoholic fermentations using saccharomycin-overproducing Saccharomyces cerevisiae strains.
    Branco P; Sabir F; Diniz M; Carvalho L; Albergaria H; Prista C
    Appl Microbiol Biotechnol; 2019 Apr; 103(7):3073-3083. PubMed ID: 30734124
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Polygenic Analysis in Absence of Major Effector
    Holt S; Trindade de Carvalho B; Foulquié-Moreno MR; Thevelein JM
    mBio; 2018 Aug; 9(4):. PubMed ID: 30154260
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Enhanced xylose fermentation by engineered yeast expressing NADH oxidase through high cell density inoculums.
    Zhang GC; Turner TL; Jin YS
    J Ind Microbiol Biotechnol; 2017 Mar; 44(3):387-395. PubMed ID: 28070721
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.