These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
467 related articles for article (PubMed ID: 32251957)
1. Transcriptome analysis of genes and pathways associated with salt tolerance in alfalfa under non-uniform salt stress. Xiong X; Wei YQ; Chen JH; Liu N; Zhang YJ Plant Physiol Biochem; 2020 Jun; 151():323-333. PubMed ID: 32251957 [TBL] [Abstract][Full Text] [Related]
2. Transcriptomic analysis of differentially expressed genes in leaves and roots of two alfalfa (Medicago sativa L.) cultivars with different salt tolerance. Bhattarai S; Fu YB; Coulman B; Tanino K; Karunakaran C; Biligetu B BMC Plant Biol; 2021 Oct; 21(1):446. PubMed ID: 34610811 [TBL] [Abstract][Full Text] [Related]
3. Transcriptome analysis and differential gene expression profiling of two contrasting quinoa genotypes in response to salt stress. Shi P; Gu M BMC Plant Biol; 2020 Dec; 20(1):568. PubMed ID: 33380327 [TBL] [Abstract][Full Text] [Related]
4. Analysis of the alfalfa root transcriptome in response to salinity stress. Postnikova OA; Shao J; Nemchinov LG Plant Cell Physiol; 2013 Jul; 54(7):1041-55. PubMed ID: 23592587 [TBL] [Abstract][Full Text] [Related]
5. Full-length transcript sequencing and comparative transcriptomic analysis to evaluate the contribution of osmotic and ionic stress components towards salinity tolerance in the roots of cultivated alfalfa (Medicago sativa L.). Luo D; Zhou Q; Wu Y; Chai X; Liu W; Wang Y; Yang Q; Wang Z; Liu Z BMC Plant Biol; 2019 Jan; 19(1):32. PubMed ID: 30665358 [TBL] [Abstract][Full Text] [Related]
6. Heterogeneous root zone salinity mitigates salt injury to Sorghum bicolor (L.) Moench in a split-root system. Zhang H; Wang R; Wang H; Liu B; Xu M; Guan Y; Yang Y; Qin L; Chen E; Li F; Huang R; Zhou Y PLoS One; 2019; 14(12):e0227020. PubMed ID: 31887166 [TBL] [Abstract][Full Text] [Related]
7. RNA-Seq analysis of Clerodendrum inerme (L.) roots in response to salt stress. Xiong Y; Yan H; Liang H; Zhang Y; Guo B; Niu M; Jian S; Ren H; Zhang X; Li Y; Zeng S; Wu K; Zheng F; Teixeira da Silva JA; Ma G BMC Genomics; 2019 Oct; 20(1):724. PubMed ID: 31601194 [TBL] [Abstract][Full Text] [Related]
8. Genome-wide expression profiling in leaves and roots of date palm (Phoenix dactylifera L.) exposed to salinity. Yaish MW; Patankar HV; Assaha DVM; Zheng Y; Al-Yahyai R; Sunkar R BMC Genomics; 2017 Mar; 18(1):246. PubMed ID: 28330456 [TBL] [Abstract][Full Text] [Related]
9. Transcript analysis in two alfalfa salt tolerance selected breeding populations relative to a non-tolerant population. Gruber MY; Xia J; Yu M; Steppuhn H; Wall K; Messer D; Sharpe AG; Acharya SN; Wishart DS; Johnson D; Miller DR; Taheri A Genome; 2017 Feb; 60(2):104-127. PubMed ID: 28045337 [TBL] [Abstract][Full Text] [Related]
10. Effects of non-uniform root zone salinity on growth, ion regulation, and antioxidant defense system in two alfalfa cultivars. Xiong X; Liu N; Wei YQ; Bi YX; Luo JC; Xu RX; Zhou JQ; Zhang YJ Plant Physiol Biochem; 2018 Nov; 132():434-444. PubMed ID: 30290335 [TBL] [Abstract][Full Text] [Related]
11. Transcriptome analysis of grapevine under salinity and identification of key genes responsible for salt tolerance. Das P; Majumder AL Funct Integr Genomics; 2019 Jan; 19(1):61-73. PubMed ID: 30046943 [TBL] [Abstract][Full Text] [Related]
12. Comparative analysis of alfalfa (Medicago sativa L.) leaf transcriptomes reveals genotype-specific salt tolerance mechanisms. Lei Y; Xu Y; Hettenhausen C; Lu C; Shen G; Zhang C; Li J; Song J; Lin H; Wu J BMC Plant Biol; 2018 Feb; 18(1):35. PubMed ID: 29448940 [TBL] [Abstract][Full Text] [Related]
13. Comparative transcriptome analysis of the garden asparagus (Asparagus officinalis L.) reveals the molecular mechanism for growth with arbuscular mycorrhizal fungi under salinity stress. Zhang X; Han C; Gao H; Cao Y Plant Physiol Biochem; 2019 Aug; 141():20-29. PubMed ID: 31125808 [TBL] [Abstract][Full Text] [Related]
14. Transcriptional profiling of two contrasting genotypes uncovers molecular mechanisms underlying salt tolerance in alfalfa. Kaundal R; Duhan N; Acharya BR; Pudussery MV; Ferreira JFS; Suarez DL; Sandhu D Sci Rep; 2021 Mar; 11(1):5210. PubMed ID: 33664362 [TBL] [Abstract][Full Text] [Related]
15. Transcriptomic and metabolomic analyses reveal mechanisms of adaptation to salinity in which carbon and nitrogen metabolism is altered in sugar beet roots. Liu L; Wang B; Liu D; Zou C; Wu P; Wang Z; Wang Y; Li C BMC Plant Biol; 2020 Apr; 20(1):138. PubMed ID: 32245415 [TBL] [Abstract][Full Text] [Related]
16. Comparative Transcriptome Analysis of Salt-Tolerant and -Sensitive Soybean Cultivars under Salt Stress. Cheng Y; Cheng X; Wei K; Wang Y Int J Mol Sci; 2024 Sep; 25(18):. PubMed ID: 39337306 [TBL] [Abstract][Full Text] [Related]
17. Transcriptome profiling reveals multiple regulatory pathways of Tamarix chinensis in response to salt stress. Li R; Fu R; Li M; Song Y; Li J; Chen C; Gu Y; Liang X; Nie W; Ma L; Wang X; Zhang H; Zhang H Plant Cell Rep; 2023 Nov; 42(11):1809-1824. PubMed ID: 37733273 [TBL] [Abstract][Full Text] [Related]
18. Transcriptome response of roots to salt stress in a salinity-tolerant bread wheat cultivar. Amirbakhtiar N; Ismaili A; Ghaffari MR; Nazarian Firouzabadi F; Shobbar ZS PLoS One; 2019; 14(3):e0213305. PubMed ID: 30875373 [TBL] [Abstract][Full Text] [Related]
19. Transcriptome and Metabolome Analyses Revealed the Response Mechanism of Sugar Beet to Salt Stress of Different Durations. Cui J; Li J; Dai C; Li L Int J Mol Sci; 2022 Aug; 23(17):. PubMed ID: 36076993 [TBL] [Abstract][Full Text] [Related]
20. Transcriptome analysis reveals the molecular mechanisms underlying the enhancement of salt-tolerance in Melia azedarach under salinity stress. Li N; Shao T; Xu L; Long X; Rengel Z; Zhang Y Sci Rep; 2024 May; 14(1):10981. PubMed ID: 38745099 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]