These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 32251965)

  • 1. Green solvents in recovery of aluminium and plastic from waste pharmaceutical blister packaging.
    Nieminen J; Anugwom I; Kallioinen M; Mänttäri M
    Waste Manag; 2020 Apr; 107():20-27. PubMed ID: 32251965
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Separation properties of aluminium-plastic laminates in post-consumer Tetra Pak with mixed organic solvent.
    Zhang SF; Zhang LL; Luo K; Sun ZX; Mei XX
    Waste Manag Res; 2014 Apr; 32(4):317-22. PubMed ID: 24622294
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Municipal solid waste processing and separation employing wet torrefaction for alternative fuel production and aluminum reclamation.
    Mu'min GF; Prawisudha P; Zaini IN; Aziz M; Pasek AD
    Waste Manag; 2017 Sep; 67():106-120. PubMed ID: 28529039
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Pyrolysis of plastic packaging waste: A comparison of plastic residuals from material recovery facilities with simulated plastic waste.
    Adrados A; de Marco I; Caballero BM; López A; Laresgoiti MF; Torres A
    Waste Manag; 2012 May; 32(5):826-32. PubMed ID: 21795037
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Untapped options to reduce waste from blister packaging for tablets and capsules.
    Falconnier-Williams OC; Taeschner W; Hille A; Falconnier AD; Haefeli WE
    Eur J Clin Pharmacol; 2024 Jan; 80(1):151-161. PubMed ID: 37978998
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Recycling of aluminium laminated pouches and Tetra Pak cartons by molten metal pyrolysis - Pilot-scale experiments and economic analysis.
    Riedewald F; Wilson E; Patel Y; Vogt D; Povey I; Barton K; Lewis L; Caris T; Santos S; O'Mahoney M; Sousa-Gallagher M
    Waste Manag; 2022 Feb; 138():172-179. PubMed ID: 34896737
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Solvent-based separation and recycling of waste plastics: A review.
    Zhao YB; Lv XD; Ni HG
    Chemosphere; 2018 Oct; 209():707-720. PubMed ID: 29960198
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Lactic Acid Permeation through Deep Eutectic Solvents-Based Polymer Inclusion Membranes.
    Matsumoto M; Takemori S; Tahara Y
    Membranes (Basel); 2020 Sep; 10(9):. PubMed ID: 32961729
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Efficient extraction of flavonoids from Flos Sophorae Immaturus by tailored and sustainable deep eutectic solvent as green extraction media.
    Wang G; Cui Q; Yin LJ; Zheng X; Gao MZ; Meng Y; Wang W
    J Pharm Biomed Anal; 2019 Jun; 170():285-294. PubMed ID: 30951994
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Feasibility study of the separation of chlorinated films from plastic packaging wastes.
    Reddy MS; Yamaguchi T; Okuda T; Tsai TY; Nakai S; Nishijima W; Okada M
    Waste Manag; 2010 Apr; 30(4):597-601. PubMed ID: 20031386
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Oxidation and waste-to-energy output of aluminium waste packaging during incineration: A laboratory study.
    López FA; Román CP; García-Díaz I; Alguacil FJ
    Waste Manag; 2015 Sep; 43():162-7. PubMed ID: 26148645
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A low-toxicity and high-efficiency deep eutectic solvent for the separation of aluminum foil and cathode materials from spent lithium-ion batteries.
    Wang M; Tan Q; Liu L; Li J
    J Hazard Mater; 2019 Dec; 380():120846. PubMed ID: 31279946
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Enhanced Conversion of Xylan into Furfural using Acidic Deep Eutectic Solvents with Dual Solvent and Catalyst Behavior.
    Morais ES; Freire MG; Freire CSR; Coutinho JAP; Silvestre AJD
    ChemSusChem; 2020 Feb; 13(4):784-790. PubMed ID: 31846225
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Serum aluminium levels in glue-sniffer adolescent and in glue containers.
    Akay C; Kalman S; Dündaröz R; Sayal A; Aydin A; Ozkan Y; Gül H
    Basic Clin Pharmacol Toxicol; 2008 May; 102(5):433-6. PubMed ID: 18331391
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Recovery and distribution of incinerated aluminum packaging waste.
    Hu Y; Bakker MC; de Heij PG
    Waste Manag; 2011 Dec; 31(12):2422-30. PubMed ID: 21862306
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Management of aluminium packaging waste in selected European countries.
    Warrings R; Fellner J
    Waste Manag Res; 2019 Apr; 37(4):357-364. PubMed ID: 30836862
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Electrical separation of plastics coming from special waste.
    Gente V; La Marca F; Lucci F; Massacci P
    Waste Manag; 2003; 23(10):951-8. PubMed ID: 14614928
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Challenges and opportunities of solvent-based additive extraction methods for plastic recycling.
    Ügdüler S; Van Geem KM; Roosen M; Delbeke EIP; De Meester S
    Waste Manag; 2020 Mar; 104():148-182. PubMed ID: 31978833
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Development of a plastic waste treatment process by combining deep eutectic solvent (DES) pretreatment and bioaugmentation with a plastic-degrading bacterial consortium.
    Krainara S; Mistry AN; Malee C; Chavananikul C; Pinyakong O; Assavalapsakul W; Jitpraphai SM; Kachenchart B; Luepromchai E
    J Hazard Mater; 2023 Oct; 460():132507. PubMed ID: 37699265
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Influence of reflective materials, emitter intensity and foil thickness on the variability of near-infrared spectra of 2D plastic packaging materials.
    Koinig G; Friedrich K; Rutrecht B; Oreski G; Barretta C; Vollprecht D
    Waste Manag; 2022 May; 144():543-551. PubMed ID: 35379528
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.