BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 32251981)

  • 1. Sulfide reduction can significantly enhance transport of biochar fine particles in saturated porous medium.
    Ma P; Chen W
    Environ Pollut; 2020 Aug; 263(Pt B):114445. PubMed ID: 32251981
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Transport of biochar particles in saturated granular media: effects of pyrolysis temperature and particle size.
    Wang D; Zhang W; Hao X; Zhou D
    Environ Sci Technol; 2013 Jan; 47(2):821-8. PubMed ID: 23249307
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Transport and retention of reduced graphene oxide materials in saturated porous media: Synergistic effects of enhanced attachment and particle aggregation.
    Xia T; Ma P; Qi Y; Zhu L; Qi Z; Chen W
    Environ Pollut; 2019 Apr; 247():383-391. PubMed ID: 30690234
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Transport behaviors of plastic particles in saturated quartz sand without and with biochar/Fe
    Tong M; He L; Rong H; Li M; Kim H
    Water Res; 2020 Feb; 169():115284. PubMed ID: 31739235
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Influence of Biochar on Deposition and Release of Clay Colloids in Saturated Porous Media.
    Haque ME; Shen C; Li T; Chu H; Wang H; Li Z; Huang Y
    J Environ Qual; 2017 Nov; 46(6):1480-1488. PubMed ID: 29293838
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cotransport and deposition of biochar with different sized-plastic particles in saturated porous media.
    Tong M; Li T; Li M; He L; Ma Z
    Sci Total Environ; 2020 Apr; 713():136387. PubMed ID: 31954247
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Transport of Sulfide-Reduced Graphene Oxide in Saturated Quartz Sand: Cation-Dependent Retention Mechanisms.
    Xia T; Fortner JD; Zhu D; Qi Z; Chen W
    Environ Sci Technol; 2015 Oct; 49(19):11468-75. PubMed ID: 26348539
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Transport behaviors of biochar particles in saturated porous media under DC electric field.
    Liu Y; Zhang X; Xu Y; Liu Q; Ngo HH; Cao W
    Sci Total Environ; 2023 Jan; 856(Pt 2):159084. PubMed ID: 36179834
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Recovery of biochar particles laden with lead in saturated porous media by DC electric field.
    Liu Y; Bao H; Chen C; Cao W; Zhang X; Xu Y; Ngo HH; Liu Q
    Chemosphere; 2024 May; 355():141890. PubMed ID: 38575085
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Biosurfactant-mediated mobility of graphene oxide nanoparticles in saturated porous media.
    Chen J; Zhang Q; Zhu Y; Li Y; Chen W; Lu T; Qi Z
    Environ Sci Process Impacts; 2022 Oct; 24(10):1883-1894. PubMed ID: 36148869
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ionic specificity mediates the transport and retention of graphene-based nanomaterials in saturated porous media.
    Xia T; Xie Y; Bai S; Guo X; Zhu L; Zhang C
    Sci Total Environ; 2023 Jan; 854():158724. PubMed ID: 36108856
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of biochar on transport and retention of phosphorus in porous media: Laboratory test and modeling.
    Li Y; Zhao Y; Cheng K; Yang F
    Environ Pollut; 2022 Mar; 297():118788. PubMed ID: 34990736
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Insights into the transport of pristine and photoaged graphene oxide-hematite nanohybrids in saturated porous media: Impacts of XDLVO interactions and surface roughness.
    Xia T; Li S; Wang H; Guo C; Liu C; Liu A; Guo X; Zhu L
    J Hazard Mater; 2021 Oct; 419():126488. PubMed ID: 34214851
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Altered transport of lindane caused by the retention of natural particles in saturated porous media.
    Ngueleu SK; Grathwohl P; Cirpka OA
    J Contam Hydrol; 2014 Jul; 162-163():47-63. PubMed ID: 24859485
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Transport behavior of micro polyethylene particles in saturated quartz sand: Impacts of input concentration and physicochemical factors.
    Hou J; Xu X; Lan L; Miao L; Xu Y; You G; Liu Z
    Environ Pollut; 2020 Aug; 263(Pt B):114499. PubMed ID: 32283397
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Co-transport of Pesticide Acetamiprid and Silica Nanoparticles in Biochar-Amended Sand Porous Media.
    Wang H; Huang Y; Shen C; Wu J; Yan A; Zhang H
    J Environ Qual; 2016 Sep; 45(5):1749-1759. PubMed ID: 27695763
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Transport characteristics of polystyrene microplastics in saturated porous media with biochar/Fe
    Wang X; Dan Y; Diao Y; Liu F; Wang H; Sang W; Zhang Y
    Sci Total Environ; 2022 Nov; 847():157576. PubMed ID: 35882331
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Antagonistic effects of humic acid and iron oxyhydroxide grain-coating on biochar nanoparticle transport in saturated sand.
    Wang D; Zhang W; Zhou D
    Environ Sci Technol; 2013 May; 47(10):5154-61. PubMed ID: 23614641
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Chemical Aging Changed Aggregation Kinetics and Transport of Biochar Colloids.
    Wang Y; Zhang W; Shang J; Shen C; Joseph SD
    Environ Sci Technol; 2019 Jul; 53(14):8136-8146. PubMed ID: 31185160
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of physicochemical factors on the transport of aged polystyrene nanoparticles in saturated porous media.
    Xi X; Wang L; Zhou T; Yin J; Sun H; Yin X; Wang N
    Chemosphere; 2022 Feb; 289():133239. PubMed ID: 34896420
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.