BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

50 related articles for article (PubMed ID: 32251985)

  • 1. Synergistic improvement of Shewanella loihica PV-4 extracellular electron transfer using a TiO
    Su L; Yin T; Du H; Zhang W; Fu D
    Bioelectrochemistry; 2020 Aug; 134():107519. PubMed ID: 32251985
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A biocompatible electrode/exoelectrogens interface augments bidirectional electron transfer and bioelectrochemical reactions.
    Fang Z; Hu J; Xu MY; Li SW; Li C; Zhou X; Wei J
    Bioelectrochemistry; 2024 Aug; 158():108723. PubMed ID: 38733720
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Extracellular polymeric substances are transient media for microbial extracellular electron transfer.
    Xiao Y; Zhang E; Zhang J; Dai Y; Yang Z; Christensen HEM; Ulstrup J; Zhao F
    Sci Adv; 2017 Jul; 3(7):e1700623. PubMed ID: 28695213
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Spatiotemporal mapping of bacterial membrane potential responses to extracellular electron transfer.
    Pirbadian S; Chavez MS; El-Naggar MY
    Proc Natl Acad Sci U S A; 2020 Aug; 117(33):20171-20179. PubMed ID: 32747561
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Modeling biofilms with dual extracellular electron transfer mechanisms.
    Renslow R; Babauta J; Kuprat A; Schenk J; Ivory C; Fredrickson J; Beyenal H
    Phys Chem Chem Phys; 2013 Nov; 15(44):19262-83. PubMed ID: 24113651
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Impact of TiO2 nanoparticles on growth, biofilm formation, and flavin secretion in Shewanella oneidensis.
    Maurer-Jones MA; Gunsolus IL; Meyer BM; Christenson CJ; Haynes CL
    Anal Chem; 2013 Jun; 85(12):5810-8. PubMed ID: 23701037
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Artificial and Biosynthetic Nanoparticles Boost Bioelectrochemical Reactions via Efficient Bidirectional Electron Transfer of Shewanella loihica.
    Chen H; Wei YQ; Xu MY; Zhu MW; Liu J; Yong YC; Fang Z
    Small; 2024 Mar; ():e2400962. PubMed ID: 38511578
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Enhancing Extracellular Electron Transfer of a 3D-Printed
    Yang J; Xu P; Li H; Gao H; Cheng S; Shen C
    ACS Appl Bio Mater; 2024 May; 7(5):2734-2740. PubMed ID: 38651321
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Promotion of direct electron transfer between
    He X; Lu H; Fu J; Zhou H; Qian X; Qiao Y
    Front Microbiol; 2024; 15():1407800. PubMed ID: 38939188
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Enhanced bidirectional extracellular electron transfer based on biointerface interaction of conjugated polymers-bacteria biohybrid system.
    Zhang P; Zhou X; Wang X; Li Z
    Colloids Surf B Biointerfaces; 2023 Aug; 228():113383. PubMed ID: 37295125
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Electroactive membrane fusion-liposome for increased electron transfer to enhance radiodynamic therapy.
    Chen YC; Li YT; Lee CL; Kuo YT; Ho CL; Lin WC; Hsu MC; Long X; Chen JS; Li WP; Su CH; Okamoto A; Yeh CS
    Nat Nanotechnol; 2023 Dec; 18(12):1492-1501. PubMed ID: 37537274
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Enforcing energy consumption promotes microbial extracellular respiration for xenobiotic bioconversion.
    Liang ZH; Sun H; Li Y; Hu A; Tang Q; Yu HQ
    Environ Microbiol; 2023 Dec; 25(12):2943-2957. PubMed ID: 37602917
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Lack of Periplasmic Non-heme Protein SorA Increases
    Kong G; Song D; Guo J; Sun G; Zhu C; Chen F; Yang Y; Xu M
    Front Microbiol; 2020; 11():262. PubMed ID: 32158435
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Electrochemical Characterization of Two Gut Microbial Strains Cooperatively Promoting Multiple Sclerosis Pathogenesis.
    Naradasu D; Miran W; Okamoto A
    Microorganisms; 2024 Jan; 12(2):. PubMed ID: 38399661
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Electromagnetic Field Drives the Bioelectrocatalysis of γ-Fe
    Wang X; Shi Z; Wang Z; Wu X
    Materials (Basel); 2024 Mar; 17(7):. PubMed ID: 38612017
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Transcriptional regulation of living materials via extracellular electron transfer.
    Graham AJ; Partipilo G; Dundas CM; Miniel Mahfoud IE; Halwachs KN; Holwerda AJ; Simmons TR; FitzSimons TM; Coleman SM; Rinehart R; Chiu D; Tyndall AE; Sajbel KC; Rosales AM; Keitz BK
    Nat Chem Biol; 2024 May; ():. PubMed ID: 38783133
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Microbe-Anode Interactions: Comparing the impact of genetic and material engineering approaches to improve the performance of microbial electrochemical systems (MES).
    Klein EM; Knoll MT; Gescher J
    Microb Biotechnol; 2023 Jun; 16(6):1179-1202. PubMed ID: 36808480
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Real-time bioelectronic sensing of environmental contaminants.
    Atkinson JT; Su L; Zhang X; Bennett GN; Silberg JJ; Ajo-Franklin CM
    Nature; 2022 Nov; 611(7936):548-553. PubMed ID: 36323787
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Electrochemical Characteristics of
    Wang S; Zhang X; Marsili E
    Molecules; 2022 Aug; 27(16):. PubMed ID: 36014568
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Contribution of configurations, electrode and membrane materials, electron transfer mechanisms, and cost of components on the current and future development of microbial fuel cells.
    Borja-Maldonado F; López Zavala MÁ
    Heliyon; 2022 Jul; 8(7):e09849. PubMed ID: 35855980
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 3.