These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. Simple surface engineering of polydimethylsiloxane with polydopamine for stabilized mesenchymal stem cell adhesion and multipotency. Chuah YJ; Koh YT; Lim K; Menon NV; Wu Y; Kang Y Sci Rep; 2015 Dec; 5():18162. PubMed ID: 26647719 [TBL] [Abstract][Full Text] [Related]
4. Optimization of a polydopamine (PD)-based coating method and polydimethylsiloxane (PDMS) substrates for improved mouse embryonic stem cell (ESC) pluripotency maintenance and cardiac differentiation. Fu J; Chuah YJ; Ang WT; Zheng N; Wang DA Biomater Sci; 2017 May; 5(6):1156-1173. PubMed ID: 28509913 [TBL] [Abstract][Full Text] [Related]
5. The effects of poly(dimethylsiloxane) surface silanization on the mesenchymal stem cell fate. Chuah YJ; Kuddannaya S; Lee MH; Zhang Y; Kang Y Biomater Sci; 2015 Feb; 3(2):383-90. PubMed ID: 26218129 [TBL] [Abstract][Full Text] [Related]
6. Mitigated reactive oxygen species generation leads to an improvement of cell proliferation on poly[glycidyl methacrylate-co-poly(ethylene glycol) methacrylate] functionalized polydimethylsiloxane surfaces. Yu L; Shi Z; Gao L; Li C J Biomed Mater Res A; 2015 Sep; 103(9):2987-97. PubMed ID: 25711883 [TBL] [Abstract][Full Text] [Related]
7. Surface modification of polydimethylsiloxane by the cataractous eye protein isolate. Parveen S; Basu M; Chowdhury P; Dhara T; DasGupta S; Das S; Dasgupta S Int J Biol Macromol; 2024 Mar; 260(Pt 2):129470. PubMed ID: 38237817 [TBL] [Abstract][Full Text] [Related]
8. Bioactivation of 3D Cell-Imprinted Polydimethylsiloxane Surfaces by Bone Protein Nanocoating for Bone Tissue Engineering. Babaei M; Nasernejad B; Sharifikolouei E; Shokrgozar MA; Bonakdar S ACS Omega; 2022 Aug; 7(30):26353-26367. PubMed ID: 35936447 [TBL] [Abstract][Full Text] [Related]
9. Atmospheric Pressure Plasma Functionalization of Sealed PDMS Microfluidics: Application to Capillary Pumping and Enhanced Cell Growth. Zeniou A; Kefallinou D; Dimitrakellis P; Xenogiannopoulou E; Grigoriou M; Dimoulas A; Boumpas DT; Tserepi A; Gogolides E Chempluschem; 2024 Dec; 89(12):e202400290. PubMed ID: 39085045 [TBL] [Abstract][Full Text] [Related]
10. The effects of gelatin-dopamine coating on polydimethylsiloxane substrates on pluripotency maintenance and myocardial differentiation of cultured mouse embryonic stem cells. Fu J; Quek KY; Chuah YJ; Lim CS; Fan C; Wang DA J Mater Chem B; 2016 Dec; 4(48):7961-7973. PubMed ID: 32263786 [TBL] [Abstract][Full Text] [Related]
11. Surface Modification of PDMS-Based Microfluidic Devices with Collagen Using Polydopamine as a Spacer to Enhance Primary Human Bronchial Epithelial Cell Adhesion. Dabaghi M; Shahriari S; Saraei N; Da K; Chandiramohan A; Selvaganapathy PR; Hirota JA Micromachines (Basel); 2021 Jan; 12(2):. PubMed ID: 33530564 [TBL] [Abstract][Full Text] [Related]
12. [Effect of polydimethylsiloxane matrix elasticity on osteogenic differentiation of rat marrow stromal cells]. Mu Y; Zhao JZ; Yang C; Zu Y; Li Q Zhonghua Kou Qiang Yi Xue Za Zhi; 2017 Aug; 52(8):492-498. PubMed ID: 28835031 [No Abstract] [Full Text] [Related]
13. Polydopamine-collagen complex to enhance the biocompatibility of polydimethylsiloxane substrates for sustaining long-term culture of L929 fibroblasts and tendon stem cells. Li Q; Sun L; Zhang L; Xu Z; Kang Y; Xue P J Biomed Mater Res A; 2018 Feb; 106(2):408-418. PubMed ID: 28971550 [TBL] [Abstract][Full Text] [Related]
14. Surface chemical modification of poly(dimethylsiloxane) for the enhanced adhesion and proliferation of mesenchymal stem cells. Kuddannaya S; Chuah YJ; Lee MH; Menon NV; Kang Y; Zhang Y ACS Appl Mater Interfaces; 2013 Oct; 5(19):9777-84. PubMed ID: 24015724 [TBL] [Abstract][Full Text] [Related]
15. Mechanism of Adhesion of Natural Polymer Coatings to Chemically Modified Siloxane Polymer. Joseph E; Rajput SS; Patil S; Nisal A Langmuir; 2021 Mar; 37(9):2974-2984. PubMed ID: 33645228 [TBL] [Abstract][Full Text] [Related]
16. Improved cell adhesion under shear stress in PDMS microfluidic devices. Siddique A; Meckel T; Stark RW; Narayan S Colloids Surf B Biointerfaces; 2017 Feb; 150():456-464. PubMed ID: 27847226 [TBL] [Abstract][Full Text] [Related]
17. Surface characterization using chemical force microscopy and the flow performance of modified polydimethylsiloxane for microfluidic device applications. Wang B; Abdulali-Kanji Z; Dodwell E; Horton JH; Oleschuk RD Electrophoresis; 2003 May; 24(9):1442-50. PubMed ID: 12731032 [TBL] [Abstract][Full Text] [Related]
18. Comparison of PDMS and NOA Microfluidic Chips: Deformation, Roughness, Hydrophilicity and Flow Performance. Turcitu T; Armstrong CJK; Lee-Yow N; Salame M; Le AV; Fenech M Micromachines (Basel); 2023 Oct; 14(11):. PubMed ID: 38004890 [TBL] [Abstract][Full Text] [Related]
19. Chemical and physical modifications to poly(dimethylsiloxane) surfaces affect adhesion of Caco-2 cells. Wang L; Sun B; Ziemer KS; Barabino GA; Carrier RL J Biomed Mater Res A; 2010 Jun; 93(4):1260-71. PubMed ID: 19827104 [TBL] [Abstract][Full Text] [Related]
20. PDMS nanoparticles-decorated PDMS substrate promotes adhesion, proliferation and differentiation of skin cells. Maparu AK; Singh P; Rai B; Sharma A; Sivakumar S J Colloid Interface Sci; 2024 Apr; 659():629-638. PubMed ID: 38198940 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]