These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 32252446)

  • 1. Towards the Development of an Affordable and Practical Light Attenuation Turbidity Sensor for Remote Near Real-Time Aquatic Monitoring.
    Trevathan J; Read W; Schmidtke S
    Sensors (Basel); 2020 Apr; 20(7):. PubMed ID: 32252446
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Open-source Internet of Things remote aquatic environmental sensing.
    Trevathan J; Schmidtke S
    HardwareX; 2022 Oct; 12():e00336. PubMed ID: 35860787
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Development of a Frugal, In Situ Sensor Implementing a Ratiometric Method for Continuous Monitoring of Turbidity in Natural Waters.
    Sanchez R; Groc M; Vuillemin R; Pujo-Pay M; Raimbault V
    Sensors (Basel); 2023 Feb; 23(4):. PubMed ID: 36850493
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Open-source, low-cost, in-situ turbidity sensor for river network monitoring.
    Droujko J; Molnar P
    Sci Rep; 2022 Jun; 12(1):10341. PubMed ID: 35726001
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Measurement differences between turbidity instruments, and their implications for suspended sediment concentration and load calculations: A sensor inter-comparison study.
    Rymszewicz A; O'Sullivan JJ; Bruen M; Turner JN; Lawler DM; Conroy E; Kelly-Quinn M
    J Environ Manage; 2017 Sep; 199():99-108. PubMed ID: 28527380
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Smart Environmental Monitoring and Assessment Technologies (SEMAT)-A New Paradigm for Low-Cost, Remote Aquatic Environmental Monitoring.
    Trevathan J; Johnstone R
    Sensors (Basel); 2018 Jul; 18(7):. PubMed ID: 30002319
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Turbidimeter design and analysis: a review on optical fiber sensors for the measurement of water turbidity.
    Omar AF; Matjafri MZ
    Sensors (Basel); 2009; 9(10):8311-35. PubMed ID: 22408507
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A Compact, Low-Cost, and Low-Power Turbidity Sensor for Continuous In Situ Stormwater Monitoring.
    Wang M; Shi B; Catsamas S; Kolotelo P; McCarthy D
    Sensors (Basel); 2024 Jun; 24(12):. PubMed ID: 38931710
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A Glass-Fiber-Optic Turbidity Sensor for Real-Time In Situ Water Quality Monitoring.
    Vu CT; Zahrani AA; Duan L; Wu T
    Sensors (Basel); 2023 Aug; 23(16):. PubMed ID: 37631810
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Low-Cost GRIN-Lens-Based Nephelometric Turbidity Sensing in the Range of 0.1-1000 NTU.
    Metzger M; Konrad A; Blendinger F; Modler A; Meixner AJ; Bucher V; Brecht M
    Sensors (Basel); 2018 Apr; 18(4):. PubMed ID: 29642380
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The HydroColor App: Above Water Measurements of Remote Sensing Reflectance and Turbidity Using a Smartphone Camera.
    Leeuw T; Boss E
    Sensors (Basel); 2018 Jan; 18(1):. PubMed ID: 29337917
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Design of a Multipoint Cost-Effective Optical Instrument for Continuous In-Situ Monitoring of Turbidity and Sediment.
    Matos T; Faria CL; Martins MS; Henriques R; Gomes PA; Goncalves LM
    Sensors (Basel); 2020 Jun; 20(11):. PubMed ID: 32512850
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Increasing precision of turbidity-based suspended sediment concentration and load estimates.
    Jastram JD; Zipper CE; Zelazny LW; Hyer KE
    J Environ Qual; 2010; 39(4):1306-16. PubMed ID: 20830919
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Automatic real-time uncertainty estimation for online measurements: a case study on water turbidity.
    Kahiluoto J; Hirvonen J; Näykki T
    Environ Monit Assess; 2019 Apr; 191(5):259. PubMed ID: 30941608
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An affordable open-source turbidimeter.
    Kelley CD; Krolick A; Brunner L; Burklund A; Kahn D; Ball WP; Weber-Shirk M
    Sensors (Basel); 2014 Apr; 14(4):7142-55. PubMed ID: 24759114
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Development of a Cost-Effective Optical Sensor for Continuous Monitoring of Turbidity and Suspended Particulate Matter in Marine Environment.
    Matos T; Faria CL; Martins MS; Henriques R; Gomes PA; Goncalves LM
    Sensors (Basel); 2019 Oct; 19(20):. PubMed ID: 31614983
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Smartphone-based turbidity reader.
    Ceylan Koydemir H; Rajpal S; Gumustekin E; Karinca D; Liang K; Göröcs Z; Tseng D; Ozcan A
    Sci Rep; 2019 Dec; 9(1):19901. PubMed ID: 31882742
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Monitoring Turbidity in San Francisco Estuary and Sacramento-San Joaquin Delta Using Satellite Remote Sensing.
    Lee CM; Hestir EL; Tufillaro N; Palmieri B; Acuña S; Osti A; Bergamaschi BA; Sommer T
    J Am Water Resour Assoc; 2021 Oct; 57(5):737-751. PubMed ID: 35873730
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Understanding the influence of suspended solids on water quality and aquatic biota.
    Bilotta GS; Brazier RE
    Water Res; 2008 Jun; 42(12):2849-61. PubMed ID: 18462772
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Estimation of underwater visibility in coastal and inland waters using remote sensing data.
    Kulshreshtha A; Shanmugam P
    Environ Monit Assess; 2017 Apr; 189(4):199. PubMed ID: 28361489
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.