These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
373 related articles for article (PubMed ID: 32252465)
1. Transitional States in Ligand-Dependent Transformation of the Aryl Hydrocarbon Receptor into Its DNA-Binding Form. Soshilov AA; Motta S; Bonati L; Denison MS Int J Mol Sci; 2020 Apr; 21(7):. PubMed ID: 32252465 [TBL] [Abstract][Full Text] [Related]
2. Role of the Per/Arnt/Sim domains in ligand-dependent transformation of the aryl hydrocarbon receptor. Soshilov A; Denison MS J Biol Chem; 2008 Nov; 283(47):32995-3005. PubMed ID: 18806268 [TBL] [Abstract][Full Text] [Related]
3. Role of heat shock protein 90 dissociation in mediating agonist-induced activation of the aryl hydrocarbon receptor. Heid SE; Pollenz RS; Swanson HI Mol Pharmacol; 2000 Jan; 57(1):82-92. PubMed ID: 10617682 [TBL] [Abstract][Full Text] [Related]
4. Multiple roles of ligand in transforming the dioxin receptor to an active basic helix-loop-helix/PAS transcription factor complex with the nuclear protein Arnt. Lees MJ; Whitelaw ML Mol Cell Biol; 1999 Aug; 19(8):5811-22. PubMed ID: 10409767 [TBL] [Abstract][Full Text] [Related]
5. Identification of functional domains of the aryl hydrocarbon receptor. Fukunaga BN; Probst MR; Reisz-Porszasz S; Hankinson O J Biol Chem; 1995 Dec; 270(49):29270-8. PubMed ID: 7493958 [TBL] [Abstract][Full Text] [Related]
6. Structural and functional characterization of the aryl hydrocarbon receptor ligand binding domain by homology modeling and mutational analysis. Pandini A; Denison MS; Song Y; Soshilov AA; Bonati L Biochemistry; 2007 Jan; 46(3):696-708. PubMed ID: 17223691 [TBL] [Abstract][Full Text] [Related]
7. Identification of functional domains of the aryl hydrocarbon receptor nuclear translocator protein (ARNT). Reisz-Porszasz S; Probst MR; Fukunaga BN; Hankinson O Mol Cell Biol; 1994 Sep; 14(9):6075-86. PubMed ID: 8065341 [TBL] [Abstract][Full Text] [Related]
8. Ligand displaces heat shock protein 90 from overlapping binding sites within the aryl hydrocarbon receptor ligand-binding domain. Soshilov A; Denison MS J Biol Chem; 2011 Oct; 286(40):35275-82. PubMed ID: 21856752 [TBL] [Abstract][Full Text] [Related]
9. The basic helix-loop-helix/PAS factor Sim is associated with hsp90. Implications for regulation by interaction with partner factors. McGuire J; Coumailleau P; Whitelaw ML; Gustafsson JA; Poellinger L J Biol Chem; 1995 Dec; 270(52):31353-7. PubMed ID: 8537407 [TBL] [Abstract][Full Text] [Related]
10. Heterodimers of bHLH-PAS protein fragments derived from AhR, AhRR, and Arnt prepared by co-expression in Escherichia coli: characterization of their DNA binding activity and preparation of a DNA complex. Kikuchi Y; Ohsawa S; Mimura J; Ema M; Takasaki C; Sogawa K; Fujii-Kuriyama Y J Biochem; 2003 Jul; 134(1):83-90. PubMed ID: 12944374 [TBL] [Abstract][Full Text] [Related]
11. Two murine homologs of the Drosophila single-minded protein that interact with the mouse aryl hydrocarbon receptor nuclear translocator protein. Probst MR; Fan CM; Tessier-Lavigne M; Hankinson O J Biol Chem; 1997 Feb; 272(7):4451-7. PubMed ID: 9020169 [TBL] [Abstract][Full Text] [Related]
12. A tetratricopeptide repeat half-site in the aryl hydrocarbon receptor is important for DNA binding and trans-activation potential. Levine SL; Petrulis JR; Dubil A; Perdew GH Mol Pharmacol; 2000 Dec; 58(6):1517-24. PubMed ID: 11093792 [TBL] [Abstract][Full Text] [Related]
13. p23 protects the human aryl hydrocarbon receptor from degradation via a heat shock protein 90-independent mechanism. Pappas B; Yang Y; Wang Y; Kim K; Chung HJ; Cheung M; Ngo K; Shinn A; Chan WK Biochem Pharmacol; 2018 Jun; 152():34-44. PubMed ID: 29555469 [TBL] [Abstract][Full Text] [Related]
14. Distinct roles of the molecular chaperone hsp90 in modulating dioxin receptor function via the basic helix-loop-helix and PAS domains. Antonsson C; Whitelaw ML; McGuire J; Gustafsson JA; Poellinger L Mol Cell Biol; 1995 Feb; 15(2):756-65. PubMed ID: 7823943 [TBL] [Abstract][Full Text] [Related]
15. Caenorhabditis elegans orthologs of the aryl hydrocarbon receptor and its heterodimerization partner the aryl hydrocarbon receptor nuclear translocator. Powell-Coffman JA; Bradfield CA; Wood WB Proc Natl Acad Sci U S A; 1998 Mar; 95(6):2844-9. PubMed ID: 9501178 [TBL] [Abstract][Full Text] [Related]
16. Characterization of the AhR-hsp90-XAP2 core complex and the role of the immunophilin-related protein XAP2 in AhR stabilization. Meyer BK; Perdew GH Biochemistry; 1999 Jul; 38(28):8907-17. PubMed ID: 10413464 [TBL] [Abstract][Full Text] [Related]
17. Identification of transactivation and repression functions of the dioxin receptor and its basic helix-loop-helix/PAS partner factor Arnt: inducible versus constitutive modes of regulation. Whitelaw ML; Gustafsson JA; Poellinger L Mol Cell Biol; 1994 Dec; 14(12):8343-55. PubMed ID: 7969169 [TBL] [Abstract][Full Text] [Related]
18. Deciphering Dimerization Modes of PAS Domains: Computational and Experimental Analyses of the AhR:ARNT Complex Reveal New Insights Into the Mechanisms of AhR Transformation. Corrada D; Soshilov AA; Denison MS; Bonati L PLoS Comput Biol; 2016 Jun; 12(6):e1004981. PubMed ID: 27295348 [TBL] [Abstract][Full Text] [Related]
19. Functional analysis of aryl hydrocarbon receptor nuclear translocator interactions with aryl hydrocarbon receptor in the yeast two-hybrid system. Yamaguchi Y; Kuo MT Biochem Pharmacol; 1995 Oct; 50(8):1295-302. PubMed ID: 7488247 [TBL] [Abstract][Full Text] [Related]
20. The Cellular and Molecular Determinants of Naphthoquinone-Dependent Activation of the Aryl Hydrocarbon Receptor. Faber SC; Giani Tagliabue S; Bonati L; Denison MS Int J Mol Sci; 2020 Jun; 21(11):. PubMed ID: 32526934 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]