These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
165 related articles for article (PubMed ID: 32252642)
1. Prevalence estimation by joint use of big data and health survey: a demonstration study using electronic health records in New York city. Kim RS; Shankar V BMC Med Res Methodol; 2020 Apr; 20(1):77. PubMed ID: 32252642 [TBL] [Abstract][Full Text] [Related]
2. Using Calibration to Reduce Measurement Error in Prevalence Estimates Based on Electronic Health Records. Chan PY; Zhao Y; Lim S; Perlman SE; McVeigh KH Prev Chronic Dis; 2018 Dec; 15():E155. PubMed ID: 30576279 [TBL] [Abstract][Full Text] [Related]
3. Can Electronic Health Records Be Used for Population Health Surveillance? Validating Population Health Metrics Against Established Survey Data. McVeigh KH; Newton-Dame R; Chan PY; Thorpe LE; Schreibstein L; Tatem KS; Chernov C; Lurie-Moroni E; Perlman SE EGEMS (Wash DC); 2016; 4(1):1267. PubMed ID: 28154837 [TBL] [Abstract][Full Text] [Related]
4. Monitoring Prevalence, Treatment, and Control of Metabolic Conditions in New York City Adults Using 2013 Primary Care Electronic Health Records: A Surveillance Validation Study. Thorpe LE; McVeigh KH; Perlman S; Chan PY; Bartley K; Schreibstein L; Rodriguez-Lopez J; Newton-Dame R EGEMS (Wash DC); 2016; 4(1):1266. PubMed ID: 28154836 [TBL] [Abstract][Full Text] [Related]
5. Innovations in Population Health Surveillance: Using Electronic Health Records for Chronic Disease Surveillance. Perlman SE; McVeigh KH; Thorpe LE; Jacobson L; Greene CM; Gwynn RC Am J Public Health; 2017 Jun; 107(6):853-857. PubMed ID: 28426302 [TBL] [Abstract][Full Text] [Related]
6. Addressing Information Biases Within Electronic Health Record Data to Improve the Examination of Epidemiologic Associations With Diabetes Prevalence Among Young Adults: Cross-Sectional Study. Conderino S; Anthopolos R; Albrecht SS; Farley SM; Divers J; Titus AR; Thorpe LE JMIR Med Inform; 2024 Oct; 12():e58085. PubMed ID: 39353204 [TBL] [Abstract][Full Text] [Related]
7. Design of the New York City Macroscope: Innovations in Population Health Surveillance Using Electronic Health Records. Newton-Dame R; McVeigh KH; Schreibstein L; Perlman S; Lurie-Moroni E; Jacobson L; Greene C; Snell E; Thorpe LE EGEMS (Wash DC); 2016; 4(1):1265. PubMed ID: 28154835 [TBL] [Abstract][Full Text] [Related]
8. Characterizing Adults Receiving Primary Medical Care in New York City: Implications for Using Electronic Health Records for Chronic Disease Surveillance. Romo ML; Chan PY; Lurie-Moroni E; Perlman SE; Newton-Dame R; Thorpe LE; McVeigh KH Prev Chronic Dis; 2016 Apr; 13():E56. PubMed ID: 27126554 [TBL] [Abstract][Full Text] [Related]
9. Statistical inference for association studies using electronic health records: handling both selection bias and outcome misclassification. Beesley LJ; Mukherjee B Biometrics; 2022 Mar; 78(1):214-226. PubMed ID: 33179768 [TBL] [Abstract][Full Text] [Related]
10. Generalizability of Indicators from the New York City Macroscope Electronic Health Record Surveillance System to Systems Based on Other EHR Platforms. McVeigh KH; Lurie-Moroni E; Chan PY; Newton-Dame R; Schreibstein L; Tatem KS; Romo ML; Thorpe LE; Perlman SE EGEMS (Wash DC); 2017 Dec; 5(1):25. PubMed ID: 29881742 [TBL] [Abstract][Full Text] [Related]
11. An augmented estimation procedure for EHR-based association studies accounting for differential misclassification. Tong J; Huang J; Chubak J; Wang X; Moore JH; Hubbard RA; Chen Y J Am Med Inform Assoc; 2020 Feb; 27(2):244-253. PubMed ID: 31617899 [TBL] [Abstract][Full Text] [Related]
12. Comparing Prevalence Estimates From Population-Based Surveys to Inform Surveillance Using Electronic Health Records. Tatem KS; Romo ML; McVeigh KH; Chan PY; Lurie-Moroni E; Thorpe LE; Perlman SE Prev Chronic Dis; 2017 Jun; 14():E44. PubMed ID: 28595032 [TBL] [Abstract][Full Text] [Related]
13. Rationale, design and respondent characteristics of the 2013-2014 New York City Health and Nutrition Examination Survey (NYC HANES 2013-2014). Thorpe LE; Greene C; Freeman A; Snell E; Rodriguez-Lopez JS; Frankel M; Punsalang A; Chernov C; Lurie E; Friedman M; Koppaka R; Perlman SE Prev Med Rep; 2015; 2():580-5. PubMed ID: 26844121 [TBL] [Abstract][Full Text] [Related]
14. The use of electronic health records to inform cancer surveillance efforts: a scoping review and test of indicators for public health surveillance of cancer prevention and control. Conderino S; Bendik S; Richards TB; Pulgarin C; Chan PY; Townsend J; Lim S; Roberts TR; Thorpe LE BMC Med Inform Decis Mak; 2022 Apr; 22(1):91. PubMed ID: 35387655 [TBL] [Abstract][Full Text] [Related]
15. Monitoring Depression Rates in an Urban Community: Use of Electronic Health Records. Davidson AJ; Xu S; Oronce CIA; Durfee MJ; McCormick EV; Steiner JF; Havranek E; Beck A J Public Health Manag Pract; 2018; 24(6):E6-E14. PubMed ID: 29334514 [TBL] [Abstract][Full Text] [Related]
16. Combining population-based administrative health records and electronic medical records for disease surveillance. Al-Azazi S; Singer A; Rabbani R; Lix LM BMC Med Inform Decis Mak; 2019 Jul; 19(1):120. PubMed ID: 31266516 [TBL] [Abstract][Full Text] [Related]
17. Exploring electronic health records as a population health surveillance tool of cardiovascular disease risk factors. Sidebottom AC; Johnson PJ; VanWormer JJ; Sillah A; Winden TJ; Boucher JL Popul Health Manag; 2015 Apr; 18(2):79-85. PubMed ID: 25290223 [TBL] [Abstract][Full Text] [Related]
18. Case studies in bias reduction and inference for electronic health record data with selection bias and phenotype misclassification. Beesley LJ; Mukherjee B Stat Med; 2022 Dec; 41(28):5501-5516. PubMed ID: 36131394 [TBL] [Abstract][Full Text] [Related]