These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 32252697)

  • 1. In vivo ultraosound elastographic evaluation of the age-related change of human lens nuclear stiffness.
    Zhou H; Yan H; Yan W; Wang X; Li Q
    BMC Ophthalmol; 2020 Apr; 20(1):135. PubMed ID: 32252697
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ultrasound elastography for evaluating stiffness of the human lens nucleus with aging: a feasibility study.
    Zhou HY; Yan H; Yan WJ; Wang XC
    Int J Ophthalmol; 2021; 14(2):240-244. PubMed ID: 33614452
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Massive increase in the stiffness of the human lens nucleus with age: the basis for presbyopia?
    Heys KR; Cram SL; Truscott RJ
    Mol Vis; 2004 Dec; 10():956-63. PubMed ID: 15616482
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Noninvasive assessment of age-related stiffness of crystalline lenses in a rabbit model using ultrasound elastography.
    Zhang X; Wang Q; Lyu Z; Gao X; Zhang P; Lin H; Guo Y; Wang T; Chen S; Chen X
    Biomed Eng Online; 2018 Jun; 17(1):75. PubMed ID: 29898725
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Shear modulus measurements on isolated human lens nuclei.
    Chai CK; Burd HJ; Wilde GS
    Exp Eye Res; 2012 Oct; 103():78-81. PubMed ID: 22992448
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Changes in the internal structure of the human crystalline lens with age and accommodation.
    Dubbelman M; Van der Heijde GL; Weeber HA; Vrensen GF
    Vision Res; 2003 Oct; 43(22):2363-75. PubMed ID: 12962993
    [TBL] [Abstract][Full Text] [Related]  

  • 7. In vivo assessment of the mechanical properties of crystalline lenses in a rabbit model using ultrasound elastography: Effects of ultrasound frequency and age.
    Wang Q; Zhu Y; Shao M; Lin H; Chen S; Chen X; Alizad A; Fatemi M; Zhang X
    Exp Eye Res; 2019 Jul; 184():258-265. PubMed ID: 31077713
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Yellowing of the human lens: nuclear and cortical contributions.
    Mellerio J
    Vision Res; 1987; 27(9):1581-7. PubMed ID: 3445490
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Assessing age-related changes in the biomechanical properties of rabbit lens using a coaligned ultrasound and optical coherence elastography system.
    Wu C; Han Z; Wang S; Li J; Singh M; Liu CH; Aglyamov S; Emelianov S; Manns F; Larin KV
    Invest Ophthalmol Vis Sci; 2015 Jan; 56(2):1292-300. PubMed ID: 25613945
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Noninvasive stiffness assessment of the human lens nucleus in patients with anisometropia using an ultrasound elastography system.
    Zhou HY; Yan H; Yan WJ; Wang XC; Li QY
    Int J Ophthalmol; 2020; 13(3):399-405. PubMed ID: 32309175
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Numerical modelling of the accommodating lens.
    Burd HJ; Judge SJ; Cross JA
    Vision Res; 2002 Aug; 42(18):2235-251. PubMed ID: 12207982
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Presbyopia and velocity of sound in the lens.
    Beers AP; Van der Heijde GL
    Optom Vis Sci; 1994 Apr; 71(4):250-3. PubMed ID: 8047337
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Correction of high myopia with the PRL phakic intraocular lens.
    Donoso R; Castillo P
    J Cataract Refract Surg; 2006 Aug; 32(8):1296-300. PubMed ID: 16863965
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Age-related changes in pancreatic elasticity: When should we be concerned about their effect on strain elastography?
    Chantarojanasiri T; Hirooka Y; Kawashima H; Ohno E; Sugimoto H; Hayashi D; Kuwahara T; Yamamura T; Funasaka K; Nakamura M; Miyahara R; Ishigami M; Watanabe O; Hashimoto S; Goto H
    Ultrasonics; 2016 Jul; 69():90-6. PubMed ID: 27070288
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Observation of aging changes of lens transparency--analysis of 541 eyes from color images].
    Shibata T; Sasaki K
    Nippon Ganka Gakkai Zasshi; 1982; 86(10):1701-8. PubMed ID: 7164979
    [No Abstract]   [Full Text] [Related]  

  • 16. Crystalline lens optical dysfunction through aging.
    Alió JL; Schimchak P; Negri HP; Montés-Micó R
    Ophthalmology; 2005 Nov; 112(11):2022-9. PubMed ID: 16183126
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comparison and Combination of Strain and Shear Wave Elastography of Breast Masses for Differentiation of Benign and Malignant Lesions by Quantitative Assessment: Preliminary Study.
    Seo M; Ahn HS; Park SH; Lee JB; Choi BI; Sohn YM; Shin SY
    J Ultrasound Med; 2018 Jan; 37(1):99-109. PubMed ID: 28688156
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Age-related changes in spectral transmittance of the human crystalline lens in situ.
    Sakanishi Y; Awano M; Mizota A; Tanaka M; Murakami A; Ohnuma K
    Ophthalmologica; 2012; 228(3):174-80. PubMed ID: 22487898
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comparison of Perioperative Parameters in Femtosecond Laser-Assisted Cataract Surgery Using 3 Nuclear Fragmentation Patterns.
    Lyu D; Shen Z; Zhang L; Qin Z; Ni S; Wang W; Zhu Y; Yao K
    Am J Ophthalmol; 2020 May; 213():283-292. PubMed ID: 31887280
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Aging of the human lens: changes in lens shape at zero-diopter accommodation.
    Koretz JF; Cook CA; Kaufman PL
    J Opt Soc Am A Opt Image Sci Vis; 2001 Feb; 18(2):265-72. PubMed ID: 11205971
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.