BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

334 related articles for article (PubMed ID: 32252820)

  • 1. A simulation study comparing the power of nine tests of the treatment effect in randomized controlled trials with a time-to-event outcome.
    Royston P; B Parmar MK
    Trials; 2020 Apr; 21(1):315. PubMed ID: 32252820
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comparison of survival distributions in clinical trials: A practical guidance.
    Chen X; Wang X; Chen K; Zheng Y; Chappell RJ; Dey J
    Clin Trials; 2020 Oct; 17(5):507-521. PubMed ID: 32594788
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Augmenting the logrank test in the design of clinical trials in which non-proportional hazards of the treatment effect may be anticipated.
    Royston P; Parmar MK
    BMC Med Res Methodol; 2016 Feb; 16():16. PubMed ID: 26869168
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Combined test versus logrank/Cox test in 50 randomised trials.
    Royston P; Choodari-Oskooei B; Parmar MKB; Rogers JK
    Trials; 2019 Mar; 20(1):172. PubMed ID: 30885277
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Impact of a non-constant baseline hazard on detection of time-dependent treatment effects: a simulation study.
    Jachno K; Heritier S; Wolfe R
    BMC Med Res Methodol; 2021 Aug; 21(1):177. PubMed ID: 34454428
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An approach to trial design and analysis in the era of non-proportional hazards of the treatment effect.
    Royston P; Parmar MK
    Trials; 2014 Aug; 15():314. PubMed ID: 25098243
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Using the geometric average hazard ratio in sample size calculation for time-to-event data with composite endpoints.
    Cortés Martínez J; Geskus RB; Kim K; Melis GG
    BMC Med Res Methodol; 2021 May; 21(1):99. PubMed ID: 33957892
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Are non-constant rates and non-proportional treatment effects accounted for in the design and analysis of randomised controlled trials? A review of current practice.
    Jachno K; Heritier S; Wolfe R
    BMC Med Res Methodol; 2019 May; 19(1):103. PubMed ID: 31096924
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The Average Hazard Ratio - A Good Effect Measure for Time-to-event Endpoints when the Proportional Hazard Assumption is Violated?
    Rauch G; Brannath W; Brückner M; Kieser M
    Methods Inf Med; 2018 May; 57(3):89-100. PubMed ID: 29719915
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Sample size calculation for the combination test under nonproportional hazards.
    Cheng H; He J
    Biom J; 2023 Apr; 65(4):e2100403. PubMed ID: 36789566
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A clinical trial design using the concept of proportional time using the generalized gamma ratio distribution.
    Phadnis MA; Wetmore JB; Mayo MS
    Stat Med; 2017 Nov; 36(26):4121-4140. PubMed ID: 28815655
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Sample size calculation for the augmented logrank test in randomized clinical trials.
    Hattori S; Komukai S; Friede T
    Stat Med; 2022 Jun; 41(14):2627-2644. PubMed ID: 35319100
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Sample size calculation for two-arm trials with time-to-event endpoint for nonproportional hazards using the concept of Relative Time when inference is built on comparing Weibull distributions.
    Phadnis MA; Mayo MS
    Biom J; 2021 Oct; 63(7):1406-1433. PubMed ID: 34272897
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Empirical power comparison of statistical tests in contemporary phase III randomized controlled trials with time-to-event outcomes in oncology.
    Horiguchi M; Hassett MJ; Uno H
    Clin Trials; 2020 Dec; 17(6):597-606. PubMed ID: 32933339
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Improved logrank-type tests for survival data using adaptive weights.
    Yang S; Prentice R
    Biometrics; 2010 Mar; 66(1):30-8. PubMed ID: 19397582
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Subgroup analyses in randomised controlled trials: quantifying the risks of false-positives and false-negatives.
    Brookes ST; Whitley E; Peters TJ; Mulheran PA; Egger M; Davey Smith G
    Health Technol Assess; 2001; 5(33):1-56. PubMed ID: 11701102
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An omnibus test for several hazard alternatives in prevention randomized controlled clinical trials.
    Garès V; Andrieu S; Dupuy JF; Savy N
    Stat Med; 2015 Feb; 34(4):541-57. PubMed ID: 25388274
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Delayed treatment effects, treatment switching and heterogeneous patient populations: How to design and analyze RCTs in oncology.
    Ristl R; Ballarini NM; Götte H; Schüler A; Posch M; König F
    Pharm Stat; 2021 Jan; 20(1):129-145. PubMed ID: 32830428
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Weighted logrank tests for interval censored data when assessment times depend on treatment.
    Fay MP; Shih JH
    Stat Med; 2012 Dec; 31(28):3760-72. PubMed ID: 22786795
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Gaining power and precision by using model-based weights in the analysis of late stage cancer trials with substantial treatment switching.
    Bowden J; Seaman S; Huang X; White IR
    Stat Med; 2016 Apr; 35(9):1423-40. PubMed ID: 26576494
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.