BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

163 related articles for article (PubMed ID: 32253288)

  • 1. The hydrodynamic regime drives flow reversals in suction-feeding larval fishes during early ontogeny.
    Krishnan K; Nafi AS; Gurka R; Holzman R
    J Exp Biol; 2020 May; 223(Pt 9):. PubMed ID: 32253288
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Suction feeding across fish life stages: flow dynamics from larvae to adults and implications for prey capture.
    Yaniv S; Elad D; Holzman R
    J Exp Biol; 2014 Oct; 217(Pt 20):3748-57. PubMed ID: 25189373
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Hydrodynamic Constraints of Suction Feeding in Low Reynolds Numbers, and the Critical Period of Larval Fishes.
    Holzman R; China V; Yaniv S; Zilka M
    Integr Comp Biol; 2015 Jul; 55(1):48-61. PubMed ID: 25936360
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The interaction between suction feeding performance and prey escape response determines feeding success in larval fish.
    Sommerfeld N; Holzman R
    J Exp Biol; 2019 Sep; 222(Pt 17):. PubMed ID: 31395675
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Hydrodynamic regime determines the feeding success of larval fish through the modulation of strike kinematics.
    China V; Levy L; Liberzon A; Elmaliach T; Holzman R
    Proc Biol Sci; 2017 Apr; 284(1853):. PubMed ID: 28446697
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Trophic guilds of suction-feeding fishes are distinguished by their characteristic hydrodynamics of swimming and feeding.
    Olsson KH; Gurka R; Holzman R
    Proc Biol Sci; 2022 Jan; 289(1966):20211968. PubMed ID: 35016537
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Morphology, Kinematics, and Dynamics: The Mechanics of Suction Feeding in Fishes.
    Day SW; Higham TE; Holzman R; Van Wassenbergh S
    Integr Comp Biol; 2015 Jul; 55(1):21-35. PubMed ID: 25980568
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Conserved spatio-temporal patterns of suction-feeding flows across aquatic vertebrates: a comparative flow visualization study.
    Jacobs CN; Holzman R
    J Exp Biol; 2018 Apr; 221(Pt 7):. PubMed ID: 29511070
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Use of computational fluid dynamics to study forces exerted on prey by aquatic suction feeders.
    Skorczewski T; Cheer A; Cheung S; Wainwright PC
    J R Soc Interface; 2010 Mar; 7(44):475-84. PubMed ID: 19674998
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hydrodynamic starvation in first-feeding larval fishes.
    China V; Holzman R
    Proc Natl Acad Sci U S A; 2014 Jun; 111(22):8083-8. PubMed ID: 24843180
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Integrating the determinants of suction feeding performance in centrarchid fishes.
    Holzman R; Day SW; Mehta RS; Wainwright PC
    J Exp Biol; 2008 Oct; 211(Pt 20):3296-305. PubMed ID: 18840664
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hydrodynamic Simulations of the Performance Landscape for Suction-Feeding Fishes Reveal Multiple Peaks for Different Prey Types.
    Olsson KH; Martin CH; Holzman R
    Integr Comp Biol; 2020 Nov; 60(5):1251-1267. PubMed ID: 32333778
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Elastic energy storage in seahorses leads to a unique suction flow dynamics compared with other actinopterygians.
    Avidan C; Holzman R
    J Exp Biol; 2021 Sep; 224(17):. PubMed ID: 34477206
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Origins, Innovations, and Diversification of Suction Feeding in Vertebrates.
    Wainwright PC; McGee MD; Longo SJ; Hernandez LP
    Integr Comp Biol; 2015 Jul; 55(1):134-45. PubMed ID: 25920508
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Longer development provides first-feeding fish time to escape hydrodynamic constraints.
    Dial TR; Lauder GV
    J Morphol; 2020 Aug; 281(8):956-969. PubMed ID: 32557795
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Body ram, not suction, is the primary axis of suction-feeding diversity in spiny-rayed fishes.
    Longo SJ; McGee MD; Oufiero CE; Waltzek TB; Wainwright PC
    J Exp Biol; 2016 Jan; 219(Pt 1):119-28. PubMed ID: 26596534
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Larval fish counteract ram and suction to capture evasive prey.
    Chang I; Hartline DK; Lenz PH; Takagi D
    R Soc Open Sci; 2022 Nov; 9(11):220714. PubMed ID: 36340513
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An integrative modeling approach to elucidate suction-feeding performance.
    Holzman R; Collar DC; Mehta RS; Wainwright PC
    J Exp Biol; 2012 Jan; 215(Pt 1):1-13. PubMed ID: 22162848
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fluid dynamics of feeding behaviour in white-spotted bamboo sharks.
    Nauwelaerts S; Wilga CD; Lauder GV; Sanford CP
    J Exp Biol; 2008 Oct; 211(Pt 19):3095-102. PubMed ID: 18805808
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The Teleost Intramandibular Joint: A mechanism That Allows Fish to Obtain Prey Unavailable to Suction Feeders.
    Gibb AC; Staab K; Moran C; Ferry LA
    Integr Comp Biol; 2015 Jul; 55(1):85-96. PubMed ID: 26002346
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.