BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 32253289)

  • 1. Alkaline guts contribute to immunity during exposure to acidified seawater in the sea urchin larva.
    Stumpp M; Petersen I; Thoben F; Yan JJ; Leippe M; Hu MY
    J Exp Biol; 2020 May; 223(Pt 9):. PubMed ID: 32253289
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Tipping points of gastric pH regulation and energetics in the sea urchin larva exposed to CO
    Lee HG; Stumpp M; Yan JJ; Tseng YC; Heinzel S; Hu MY
    Comp Biochem Physiol A Mol Integr Physiol; 2019 Aug; 234():87-97. PubMed ID: 31022521
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Na+/H+ exchangers differentially contribute to midgut fluid sodium and proton concentration in the sea urchin larva.
    Petersen I; Chang WWJ; Hu MY
    J Exp Biol; 2021 Apr; 224(7):. PubMed ID: 33674498
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Variability in larval gut pH regulation defines sensitivity to ocean acidification in six species of the Ambulacraria superphylum.
    Hu M; Tseng YC; Su YH; Lein E; Lee HG; Lee JR; Dupont S; Stumpp M
    Proc Biol Sci; 2017 Oct; 284(1864):. PubMed ID: 29021181
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Measurement of feeding rates, respiration, and pH regulatory processes in the light of ocean acidification research.
    Stumpp M; Dupont S; Hu MY
    Methods Cell Biol; 2019; 150():391-409. PubMed ID: 30777185
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ocean acidification research in the 'post-genomic' era: Roadmaps from the purple sea urchin Strongylocentrotus purpuratus.
    Evans TG; Padilla-Gamiño JL; Kelly MW; Pespeni MH; Chan F; Menge BA; Gaylord B; Hill TM; Russell AD; Palumbi SR; Sanford E; Hofmann GE
    Comp Biochem Physiol A Mol Integr Physiol; 2015 Jul; 185():33-42. PubMed ID: 25773301
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Probabilistic risk assessment of the effect of acidified seawater on development stages of sea urchin (Strongylocentrotus droebachiensis).
    Chen WY; Lin HC
    Environ Sci Pollut Res Int; 2018 May; 25(13):12947-12956. PubMed ID: 29478168
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Transcriptomic response of sea urchin larvae Strongylocentrotus purpuratus to CO2-driven seawater acidification.
    Todgham AE; Hofmann GE
    J Exp Biol; 2009 Aug; 212(Pt 16):2579-94. PubMed ID: 19648403
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Evolution of extreme stomach pH in bilateria inferred from gastric alkalization mechanisms in basal deuterostomes.
    Stumpp M; Hu MY; Tseng YC; Guh YJ; Chen YC; Yu JK; Su YH; Hwang PP
    Sci Rep; 2015 Jun; 5():10421. PubMed ID: 26051042
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comparative metabolome analysis provides new insights into increased larval mortality under seawater acidification in the sea urchin Strongylocentrotus intermedius.
    Li Y; Yin W; Zhan Y; Jia Y; Cui D; Zhang W; Chang Y
    Sci Total Environ; 2020 Dec; 747():141206. PubMed ID: 32777501
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Acidified seawater impacts sea urchin larvae pH regulatory systems relevant for calcification.
    Stumpp M; Hu MY; Melzner F; Gutowska MA; Dorey N; Himmerkus N; Holtmann WC; Dupont ST; Thorndyke MC; Bleich M
    Proc Natl Acad Sci U S A; 2012 Oct; 109(44):18192-7. PubMed ID: 23077257
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Transcriptomic responses to ocean acidification in larval sea urchins from a naturally variable pH environment.
    Evans TG; Chan F; Menge BA; Hofmann GE
    Mol Ecol; 2013 Mar; 22(6):1609-25. PubMed ID: 23317456
    [TBL] [Abstract][Full Text] [Related]  

  • 13. In situ developmental responses of tropical sea urchin larvae to ocean acidification conditions at naturally elevated pCO2 vent sites.
    Lamare MD; Liddy M; Uthicke S
    Proc Biol Sci; 2016 Nov; 283(1843):. PubMed ID: 27903867
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Impacts of Seawater pH Buffering on the Larval Microbiome and Carry-Over Effects on Later-Life Disease Susceptibility in Pacific Oysters.
    Mackenzie CL; Pearce CM; Leduc S; Roth D; Kellogg CTE; Clemente-Carvalho RBG; Green TJ
    Appl Environ Microbiol; 2022 Nov; 88(22):e0165422. PubMed ID: 36342150
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Sea urchin larvae show resilience to ocean acidification at the time of settlement and metamorphosis.
    Espinel-Velasco N; Agüera A; Lamare M
    Mar Environ Res; 2020 Jul; 159():104977. PubMed ID: 32662430
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Could the acid-base status of Antarctic sea urchins indicate a better-than-expected resilience to near-future ocean acidification?
    Collard M; De Ridder C; David B; Dehairs F; Dubois P
    Glob Chang Biol; 2015 Feb; 21(2):605-17. PubMed ID: 25270127
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Impact of microplastics and ocean acidification on critical stages of sea urchin (Paracentrotus lividus) early development.
    Bertucci JI; Juez A; Bellas J
    Chemosphere; 2022 Aug; 301():134783. PubMed ID: 35504467
    [TBL] [Abstract][Full Text] [Related]  

  • 18. CRISPR/Cas9 mutagenesis reveals a role for ABCB1 in gut immune responses to Vibrio diazotrophicus in sea urchin larvae.
    Fleming TJ; Schrankel CS; Vyas H; Rosenblatt HD; Hamdoun A
    J Exp Biol; 2021 Apr; 224(7):. PubMed ID: 33653719
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Acidification reduced growth rate but not swimming speed of larval sea urchins.
    Chan KY; García E; Dupont S
    Sci Rep; 2015 May; 5():9764. PubMed ID: 25978405
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Bacterial Exposure Mediates Developmental Plasticity and Resistance to Lethal
    Schuh NW; Carrier TJ; Schrankel CS; Reitzel AM; Heyland A; Rast JP
    Front Immunol; 2019; 10():3014. PubMed ID: 31993052
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.