These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

101 related articles for article (PubMed ID: 32253402)

  • 1. Reconfigurable microfluidics: real-time shaping of virtual channels through hydrodynamic forces.
    Taylor DP; Kaigala GV
    Lab Chip; 2020 May; 20(10):1720-1728. PubMed ID: 32253402
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Reconfigurable virtual electrowetting channels.
    Banerjee A; Kreit E; Liu Y; Heikenfeld J; Papautsky I
    Lab Chip; 2012 Feb; 12(4):758-64. PubMed ID: 22159496
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Virtual electrowetting channels: electronic liquid transport with continuous channel functionality.
    Dhindsa M; Heikenfeld J; Kwon S; Park J; Rack PD; Papautsky I
    Lab Chip; 2010 Apr; 10(7):832-6. PubMed ID: 20379566
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Microfluidic device for rapid (<15 min) automated microarray hybridization.
    Peytavi R; Raymond FR; Gagné D; Picard FJ; Jia G; Zoval J; Madou M; Boissinot K; Boissinot M; Bissonnette L; Ouellette M; Bergeron MG
    Clin Chem; 2005 Oct; 51(10):1836-44. PubMed ID: 16109708
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A Reconfigurable Microfluidics Platform for Microparticle Separation and Fluid Mixing.
    Hahn YK; Hong D; Kang JH; Choi S
    Micromachines (Basel); 2016 Aug; 7(8):. PubMed ID: 30404310
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Rapid Subtractive Patterning of Live Cell Layers with a Microfluidic Probe.
    Kashyap A; Cors JF; Lovchik RD; Kaigala GV
    J Vis Exp; 2016 Sep; (115):. PubMed ID: 27685165
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Optofluidic bioimaging platform for quantitative phase imaging of lab on a chip devices using digital holographic microscopy.
    Pandiyan VP; John R
    Appl Opt; 2016 Jan; 55(3):A54-9. PubMed ID: 26835958
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Rollable Microfluidic Systems with Microscale Bending Radius and Tuning of Device Function with Reconfigurable 3D Channel Geometry.
    Kim J; You JB; Nam SM; Seo S; Im SG; Lee W
    ACS Appl Mater Interfaces; 2017 Mar; 9(12):11156-11166. PubMed ID: 28267308
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Rapid Prototyping of an Open-Surface Microfluidic Platform Using Wettability-Patterned Surfaces Prepared by an Atmospheric-Pressure Plasma Jet.
    Wu ST; Huang CY; Weng CC; Chang CC; Li BR; Hsu CS
    ACS Omega; 2019 Oct; 4(15):16292-16299. PubMed ID: 31616806
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Microfluidics in structured multimaterial fibers.
    Yuan R; Lee J; Su HW; Levy E; Khudiyev T; Voldman J; Fink Y
    Proc Natl Acad Sci U S A; 2018 Nov; 115(46):E10830-E10838. PubMed ID: 30373819
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Reconfigurable microfluidics.
    Paratore F; Bacheva V; Bercovici M; Kaigala GV
    Nat Rev Chem; 2022 Jan; 6(1):70-80. PubMed ID: 37117618
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Formation of droplets of alternating composition in microfluidic channels and applications to indexing of concentrations in droplet-based assays.
    Zheng B; Tice JD; Ismagilov RF
    Anal Chem; 2004 Sep; 76(17):4977-82. PubMed ID: 15373431
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A simple method for the evaluation of microfluidic architecture using flow quantitation via a multiplexed fluidic resistance measurement.
    Leslie DC; Melnikoff BA; Marchiarullo DJ; Cash DR; Ferrance JP; Landers JP
    Lab Chip; 2010 Aug; 10(15):1960-6. PubMed ID: 20707008
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Electrostatically-driven elastomer components for user-reconfigurable high density microfluidics.
    Chang MP; Maharbiz MM
    Lab Chip; 2009 May; 9(9):1274-81. PubMed ID: 19370248
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Innovative Hydrophobic Valve Allows Complex Liquid Manipulations in a Self-Powered Channel-Based Microfluidic Device.
    Dal Dosso F; Tripodi L; Spasic D; Kokalj T; Lammertyn J
    ACS Sens; 2019 Mar; 4(3):694-703. PubMed ID: 30807106
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Single channel layer, single sheath-flow inlet microfluidic flow cytometer with three-dimensional hydrodynamic focusing.
    Lin SC; Yen PW; Peng CC; Tung YC
    Lab Chip; 2012 Sep; 12(17):3135-41. PubMed ID: 22763751
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Micromixing within microfluidic devices.
    Capretto L; Cheng W; Hill M; Zhang X
    Top Curr Chem; 2011; 304():27-68. PubMed ID: 21526435
    [TBL] [Abstract][Full Text] [Related]  

  • 18. 3D hydrodynamic focusing microfluidics for emerging sensing technologies.
    Daniele MA; Boyd DA; Mott DR; Ligler FS
    Biosens Bioelectron; 2015 May; 67():25-34. PubMed ID: 25041926
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hydrodynamic and direct-current insulator-based dielectrophoresis (H-DC-iDEP) microfluidic blood plasma separation.
    Mohammadi M; Madadi H; Casals-Terré J; Sellarès J
    Anal Bioanal Chem; 2015 Jun; 407(16):4733-44. PubMed ID: 25925854
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Low-dispersion electrokinetic flows for expanded separation channels in microfluidic systems: multiple faceted interfaces.
    Fiechtner GJ; Cummings EB
    J Chromatogr A; 2004 Feb; 1027(1-2):245-57. PubMed ID: 14971509
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.