These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

110 related articles for article (PubMed ID: 3225353)

  • 1. High-frequency plane waves in the ear canal: application of a simple asymptotic theory.
    Rabbitt RD
    J Acoust Soc Am; 1988 Dec; 84(6):2070-80. PubMed ID: 3225353
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Acoustic intensity, impedance and reflection coefficient in the human ear canal.
    Farmer-Fedor BL; Rabbitt RD
    J Acoust Soc Am; 2002 Aug; 112(2):600-20. PubMed ID: 12186041
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The spatial distribution of sound pressure within scaled replicas of the human ear canal.
    Stinson MR
    J Acoust Soc Am; 1985 Nov; 78(5):1596-602. PubMed ID: 4067075
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Standing wave patterns in the human ear canal used for estimation of acoustic energy reflectance at the eardrum.
    Lawton BW; Stinson MR
    J Acoust Soc Am; 1986 Apr; 79(4):1003-9. PubMed ID: 3700855
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Measurement of acoustic impedance and reflectance in the human ear canal.
    Voss SE; Allen JB
    J Acoust Soc Am; 1994 Jan; 95(1):372-84. PubMed ID: 8120248
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Sound propagation in the ear canal and coupling to the eardrum, with measurements on model systems.
    Stinson MR; Khanna SM
    J Acoust Soc Am; 1989 Jun; 85(6):2481-91. PubMed ID: 2745873
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ear canal cross-sectional pressure distributions: mathematical analysis and computation.
    Rabbitt RD; Friedrich MT
    J Acoust Soc Am; 1991 May; 89(5):2379-90. PubMed ID: 1860997
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Acoustics of ear canal measurement of eardrum SPL in simulators.
    Gilman S; Dirks DD
    J Acoust Soc Am; 1986 Sep; 80(3):783-93. PubMed ID: 3760332
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Pitch is influenced by differences in gas pressure between the middle ear and the external auditory canal. A tentative explanation based on a new aspect in inner ear theory.
    Fritze W
    Acta Otolaryngol; 1995 May; 115(3):359-62. PubMed ID: 7653254
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Three-dimensional acoustic waves in the ear canal and their interaction with the tympanic membrane.
    Rabbitt RD; Holmes MH
    J Acoust Soc Am; 1988 Mar; 83(3):1064-80. PubMed ID: 3356812
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Revision of estimates of acoustic energy reflectance at the human eardrum.
    Stinson MR
    J Acoust Soc Am; 1990 Oct; 88(4):1773-8. PubMed ID: 2262633
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Inverse solution of ear-canal area function from reflectance.
    Rasetshwane DM; Neely ST
    J Acoust Soc Am; 2011 Dec; 130(6):3873-81. PubMed ID: 22225043
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Pressure transfer function and absorption cross section from the diffuse field to the human infant ear canal.
    Keefe DH; Bulen JC; Campbell SL; Burns EM
    J Acoust Soc Am; 1994 Jan; 95(1):355-71. PubMed ID: 8120247
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Procedures for ambient-pressure and tympanometric tests of aural acoustic reflectance and admittance in human infants and adults.
    Keefe DH; Hunter LL; Feeney MP; Fitzpatrick DF
    J Acoust Soc Am; 2015 Dec; 138(6):3625-53. PubMed ID: 26723319
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparison of an analytic horn equation approach and a boundary element method for the calculation of sound fields in the human ear canal.
    Stinson MR; Daigle GA
    J Acoust Soc Am; 2005 Oct; 118(4):2405-11. PubMed ID: 16266162
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Sound pressure distribution within natural and artificial human ear canals: forward stimulation.
    Ravicz ME; Tao Cheng J; Rosowski JJ
    J Acoust Soc Am; 2014 Dec; 136(6):3132. PubMed ID: 25480061
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Compensating for ear-canal acoustics when measuring otoacoustic emissions.
    Charaziak KK; Shera CA
    J Acoust Soc Am; 2017 Jan; 141(1):515. PubMed ID: 28147590
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Numerical simulation of wave propagation in a realistic model of the human external ear.
    Fadaei M; Abouali O; Emdad H; Faramarzi M; Ahmadi G
    Comput Methods Biomech Biomed Engin; 2015; 18(16):1797-810. PubMed ID: 25513857
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Interrelation of different oto-acoustic emissions.
    Zwicker E; Schloth E
    J Acoust Soc Am; 1984 Apr; 75(4):1148-54. PubMed ID: 6725763
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ear canal pressure variations versus negative middle ear pressure: comparison using distortion product otoacoustic emission measurement in humans.
    Sun XM
    Ear Hear; 2012; 33(1):69-78. PubMed ID: 21747284
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.