These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

100 related articles for article (PubMed ID: 3225353)

  • 21. Estimation of acoustical energy reflectance at the eardrum from measurements of pressure distribution in the human ear canal.
    Stinson MR; Shaw EA; Lawton BW
    J Acoust Soc Am; 1982 Sep; 72(3):766-73. PubMed ID: 7130535
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Specification of the geometry of the human ear canal for the prediction of sound-pressure level distribution.
    Stinson MR; Lawton BW
    J Acoust Soc Am; 1989 Jun; 85(6):2492-503. PubMed ID: 2745874
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Specification of the acoustical input to the ear at high frequencies.
    Khanna SM; Stinson MR
    J Acoust Soc Am; 1985 Feb; 77(2):577-89. PubMed ID: 3973229
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Tests of some common assumptions of ear-canal acoustics in cats.
    Huang GT; Rosowski JJ; Puria S; Peake WT
    J Acoust Soc Am; 2000 Sep; 108(3 Pt 1):1147-61. PubMed ID: 11008816
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Estimation of eardrum acoustic pressure and of ear canal length from remote points in the canal.
    Chan JC; Geisler CD
    J Acoust Soc Am; 1990 Mar; 87(3):1237-47. PubMed ID: 2324390
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Estimation of the area function of human ear canals by sound pressure measurements.
    Hudde H
    J Acoust Soc Am; 1983 Jan; 73(1):24-31. PubMed ID: 6826890
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Wave model of the cat tympanic membrane.
    Parent P; Allen JB
    J Acoust Soc Am; 2007 Aug; 122(2):918-31. PubMed ID: 17672641
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Occluded-ear simulator with variable acoustic properties.
    Egolf DP; Kennedy WA; Larson VD
    J Acoust Soc Am; 1992 May; 91(5):2813-23. PubMed ID: 1629475
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Accuracy of acoustic ear canal impedances: finite element simulation of measurement methods using a coupling tube.
    Schmidt S; Hudde H
    J Acoust Soc Am; 2009 Jun; 125(6):3819-27. PubMed ID: 19507964
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Causality-constrained measurements of aural acoustic reflectance and reflection functions.
    Keefe DH
    J Acoust Soc Am; 2020 Jan; 147(1):300. PubMed ID: 32006959
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A computational model of the auditory periphery for speech and hearing research. I. Ascending path.
    Giguère C; Woodland PC
    J Acoust Soc Am; 1994 Jan; 95(1):331-42. PubMed ID: 8120244
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Comparing otoacoustic emissions evoked by chirp transients with constant absorbed sound power and constant incident pressure magnitude.
    Keefe DH; Feeney MP; Hunter LL; Fitzpatrick DF
    J Acoust Soc Am; 2017 Jan; 141(1):499. PubMed ID: 28147608
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Modeling of sound transmission from ear canal to cochlea.
    Gan RZ; Reeves BP; Wang X
    Ann Biomed Eng; 2007 Dec; 35(12):2180-95. PubMed ID: 17882549
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The effect of occluded ear impedances on the eardrum SPL produced by hearing aids.
    Gilman S; Dirks DD; Stern R
    J Acoust Soc Am; 1981 Aug; 70(2):370-86. PubMed ID: 7288025
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Fluid-Structure Finite-Element Modelling and Clinical Measurement of the Wideband Acoustic Input Admittance of the Newborn Ear Canal and Middle Ear.
    Motallebzadeh H; Maftoon N; Pitaro J; Funnell WRJ; Daniel SJ
    J Assoc Res Otolaryngol; 2017 Oct; 18(5):671-686. PubMed ID: 28721606
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Maturation of the occlusion effect: a bone conduction auditory steady state response study in infants and adults with normal hearing.
    Small SA; Hu N
    Ear Hear; 2011; 32(6):708-19. PubMed ID: 21617531
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Calibration of ear canals for audiometry at high frequencies.
    Stevens KN; Berkovitz R; Kidd G; Green DM
    J Acoust Soc Am; 1987 Feb; 81(2):470-84. PubMed ID: 3558965
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Acoustics of a standing wave tank for studying the hearing capacity of fish.
    van den Berg AV; Schuijf A
    J Acoust Soc Am; 1985 Jul; 78(1 Pt 1):12-6. PubMed ID: 4019904
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Comparison between intensity and pressure as measures of sound level in the ear canal.
    Neely ST; Gorga MP
    J Acoust Soc Am; 1998 Nov; 104(5):2925-34. PubMed ID: 9821338
    [TBL] [Abstract][Full Text] [Related]  

  • 40. New HRCT-based measurement of the human outer ear canal as a basis for acoustical methods.
    Grewe J; Thiele C; Mojallal H; Raab P; Sankowsky-Rothe T; Lenarz T; Blau M; Teschner M
    Am J Audiol; 2013 Jun; 22(1):65-73. PubMed ID: 23064418
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.