These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

100 related articles for article (PubMed ID: 3225353)

  • 41. Pure-Tone Audiometry With Forward Pressure Level Calibration Leads to Clinically-Relevant Improvements in Test-Retest Reliability.
    Lapsley Miller JA; Reed CM; Robinson SR; Perez ZD
    Ear Hear; 2018; 39(5):946-957. PubMed ID: 29470259
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Evanescent waves in simulated ear canals: Experimental demonstration and method for compensation.
    Siegel JH; Nørgaard KR; Neely ST
    J Acoust Soc Am; 2018 Oct; 144(4):2135. PubMed ID: 30404523
    [TBL] [Abstract][Full Text] [Related]  

  • 43. External ear resonance characteristics in children.
    Bentler RA
    J Speech Hear Disord; 1989 May; 54(2):264-8. PubMed ID: 2709844
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Estimation of bone conduction skull transmission by hearing thresholds and ear-canal sound pressure.
    Reinfeldt S; Stenfelt S; Håkansson B
    Hear Res; 2013 May; 299():19-28. PubMed ID: 23422311
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Quantifying ear-canal geometry with multiple computer-assisted tomographic scans.
    Egolf DP; Nelson DK; Howell HC; Larson VD
    J Acoust Soc Am; 1993 May; 93(5):2809-19. PubMed ID: 8315148
    [TBL] [Abstract][Full Text] [Related]  

  • 46. [Resonance: a study of the outer ear].
    Menezes Pde L; Cabral A; Morais Lda S; Rocha LP; Passos V
    Pro Fono; 2004; 16(3):333-40. PubMed ID: 15609588
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Method to measure acoustic impedance and reflection coefficient.
    Keefe DH; Ling R; Bulen JC
    J Acoust Soc Am; 1992 Jan; 91(1):470-85. PubMed ID: 1737890
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Phenomenological characterization of eardrum transduction.
    Shera CA; Zweig G
    J Acoust Soc Am; 1991 Jul; 90(1):253-62. PubMed ID: 1880296
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Modeling and estimating acoustic transfer functions of external ears with or without headphones.
    Deng H; Yang J
    J Acoust Soc Am; 2015 Aug; 138(2):694-707. PubMed ID: 26328687
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Modeling the identification of concurrent vowels with different fundamental frequencies.
    Meddis R; Hewitt MJ
    J Acoust Soc Am; 1992 Jan; 91(1):233-45. PubMed ID: 1737874
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Testing a method for quantifying the output of implantable middle ear hearing devices.
    Rosowski JJ; Chien W; Ravicz ME; Merchant SN
    Audiol Neurootol; 2007; 12(4):265-76. PubMed ID: 17406105
    [TBL] [Abstract][Full Text] [Related]  

  • 52. A computer simulation of hearing aid response and the effects of ear canal size.
    Kates JM
    J Acoust Soc Am; 1988 May; 83(5):1952-63. PubMed ID: 3403807
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Gain affected by the interior shape of the ear canal.
    Yu JF; Chen YS; Cheng WD
    Otolaryngol Head Neck Surg; 2011 Jun; 144(6):945-9. PubMed ID: 21493344
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Distortion product otoacoustic emissions upon ear canal pressurization.
    Zebian M; Schirkonyer V; Hensel J; Vollbort S; Fedtke T; Janssen T
    J Acoust Soc Am; 2013 Apr; 133(4):EL331-7. PubMed ID: 23556700
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Transverse pressure distributions in a simple model ear canal occluded by a hearing aid test fixture.
    Stinson MR; Daigle GA
    J Acoust Soc Am; 2007 Jun; 121(6):3689-702. PubMed ID: 17552720
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Low body mass index and jaw movement are protective of hearing in users of personal listening devices.
    Li LP; Chuang AY; McMahon C; Tung TH; Chen JK
    Laryngoscope; 2013 Aug; 123(8):1983-7. PubMed ID: 23553325
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Multiple frequency tympanometry: effects of ear canal volume compensation on static acoustic admittance and estimates of middle ear resonance.
    Shanks JE; Wilson RH; Cambron NK
    J Speech Hear Res; 1993 Feb; 36(1):178-85. PubMed ID: 8450657
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Isolating the auditory system from acoustic noise during functional magnetic resonance imaging: examination of noise conduction through the ear canal, head, and body.
    Ravicz ME; Melcher JR
    J Acoust Soc Am; 2001 Jan; 109(1):216-31. PubMed ID: 11206150
    [TBL] [Abstract][Full Text] [Related]  

  • 59. The effect of the evanescent wave upon acoustic measurements in the human ear canal.
    Brass D; Locke A
    J Acoust Soc Am; 1997 Apr; 101(4):2164-75. PubMed ID: 9104019
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Acoustic mechanisms that determine the ear-canal sound pressures generated by earphones.
    Voss SE; Rosowski JJ; Shera CA; Peake WT
    J Acoust Soc Am; 2000 Mar; 107(3):1548-65. PubMed ID: 10738809
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.