BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

229 related articles for article (PubMed ID: 32253595)

  • 1. Intelligent Robotics Incorporating Machine Learning Algorithms for Improving Functional Capacity Evaluation and Occupational Rehabilitation.
    Fong J; Ocampo R; Gross DP; Tavakoli M
    J Occup Rehabil; 2020 Sep; 30(3):362-370. PubMed ID: 32253595
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Robotic learning from demonstration of therapist's time-varying assistance to a patient in trajectory-following tasks.
    Najafi M; Adams K; Tavakoli M
    IEEE Int Conf Rehabil Robot; 2017 Jul; 2017():888-894. PubMed ID: 28813933
    [TBL] [Abstract][Full Text] [Related]  

  • 3. From the Dexterous Surgical Skill to the Battlefield-A Robotics Exploratory Study.
    Gonzalez GT; Kaur U; Rahman M; Venkatesh V; Sanchez N; Hager G; Xue Y; Voyles R; Wachs J
    Mil Med; 2021 Jan; 186(Suppl 1):288-294. PubMed ID: 33499518
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Rehabilitation robotics for the upper extremity: review with new directions for orthopaedic disorders.
    Hakim RM; Tunis BG; Ross MD
    Disabil Rehabil Assist Technol; 2017 Nov; 12(8):765-771. PubMed ID: 28035841
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Neurorehabilitation robotics: how much control should therapists have?
    Hasson CJ; Manczurowsky J; Collins EC; Yarossi M
    Front Hum Neurosci; 2023; 17():1179418. PubMed ID: 37250692
    [TBL] [Abstract][Full Text] [Related]  

  • 6. ASAP-CORPS: A Semi-Autonomous Platform for COntact-Rich Precision Surgery.
    Balakuntala MV; Gonzalez GT; Wachs JP; Voyles RM
    Mil Med; 2023 Nov; 188(Suppl 6):412-419. PubMed ID: 37948233
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effectiveness of Intelligent Control Strategies in Robot-Assisted Rehabilitation-A Systematic Review.
    Felix Brown D; Quan Xie S
    IEEE Trans Neural Syst Rehabil Eng; 2024; 32():1828-1840. PubMed ID: 38696295
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Machine learning in the optimization of robotics in the operative field.
    Ma R; Vanstrum EB; Lee R; Chen J; Hung AJ
    Curr Opin Urol; 2020 Nov; 30(6):808-816. PubMed ID: 32925312
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Human-robot cooperative movement training: learning a novel sensory motor transformation during walking with robotic assistance-as-needed.
    Emken JL; Benitez R; Reinkensmeyer DJ
    J Neuroeng Rehabil; 2007 Mar; 4():8. PubMed ID: 17391527
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Planning, execution and monitoring of physical rehabilitation therapies with a robotic architecture.
    González JC; Pulido JC; Fernández F; Suárez-Mejías C
    Stud Health Technol Inform; 2015; 210():339-43. PubMed ID: 25991162
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Design of a Data Glove for Assessment of Hand Performance Using Supervised Machine Learning.
    Sarwat H; Sarwat H; Maged SA; Emara TH; Elbokl AM; Awad MI
    Sensors (Basel); 2021 Oct; 21(21):. PubMed ID: 34770255
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Optimizing lower limb rehabilitation: the intersection of machine learning and rehabilitative robotics.
    Zhang X; Rong X; Luo H
    Front Rehabil Sci; 2024; 5():1246773. PubMed ID: 38343790
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Functional Capacity Evaluation Research: Report from the Second International Functional Capacity Evaluation Research Meeting.
    James CL; Reneman MF; Gross DP
    J Occup Rehabil; 2016 Mar; 26(1):80-3. PubMed ID: 26108156
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Association between social factors and performance during Functional Capacity Evaluations: a systematic review.
    Ansuategui Echeita J; van Holland BJ; Gross DP; Kool J; Oesch P; Trippolini MA; Reneman MF
    Disabil Rehabil; 2019 Aug; 41(16):1863-1873. PubMed ID: 29521595
    [No Abstract]   [Full Text] [Related]  

  • 15. Physical Human-Robot Collaboration: Robotic Systems, Learning Methods, Collaborative Strategies, Sensors, and Actuators.
    Ogenyi UE; Liu J; Yang C; Ju Z; Liu H
    IEEE Trans Cybern; 2021 Apr; 51(4):1888-1901. PubMed ID: 31751257
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The "Beam-Me-In Strategy" - remote haptic therapist-patient interaction with two exoskeletons for stroke therapy.
    Baur K; Rohrbach N; Hermsdörfer J; Riener R; Klamroth-Marganska V
    J Neuroeng Rehabil; 2019 Jul; 16(1):85. PubMed ID: 31296226
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Let's do this together: Bi-Manu-Interact, a novel device for studying human haptic interactive behavior.
    Ivanova E; Krause A; Schalicke M; Schellhardt F; Jankowski N; Achner J; Schmidt H; Joebges M; Kruger J
    IEEE Int Conf Rehabil Robot; 2017 Jul; 2017():708-713. PubMed ID: 28813903
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A Robot with an Augmented-Reality Display for Functional Capacity Evaluation and Rehabilitation of Injured Workers.
    Fong J; Ocampo R; Gros DP; Tavakoli M
    IEEE Int Conf Rehabil Robot; 2019 Jun; 2019():181-186. PubMed ID: 31374627
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hand Rehabilitation Learning System With an Exoskeleton Robotic Glove.
    Ma Z; Ben-Tzvi P; Danoff J
    IEEE Trans Neural Syst Rehabil Eng; 2016 Dec; 24(12):1323-1332. PubMed ID: 26595925
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Real-Time Detection of Compensatory Patterns in Patients With Stroke to Reduce Compensation During Robotic Rehabilitation Therapy.
    Cai S; Li G; Su E; Wei X; Huang S; Ma K; Zheng H; Xie L
    IEEE J Biomed Health Inform; 2020 Sep; 24(9):2630-2638. PubMed ID: 31902785
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.