BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

229 related articles for article (PubMed ID: 32253595)

  • 21. Taking a lesson from patients' recovery strategies to optimize training during robot-aided rehabilitation.
    Colombo R; Sterpi I; Mazzone A; Delconte C; Pisano F
    IEEE Trans Neural Syst Rehabil Eng; 2012 May; 20(3):276-85. PubMed ID: 22623406
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A Task-Learning Strategy for Robotic Assembly Tasks from Human Demonstrations.
    Ding G; Liu Y; Zang X; Zhang X; Liu G; Zhao J
    Sensors (Basel); 2020 Sep; 20(19):. PubMed ID: 32992888
    [TBL] [Abstract][Full Text] [Related]  

  • 23. State representation learning for control: An overview.
    Lesort T; Díaz-Rodríguez N; Goudou JI; Filliat D
    Neural Netw; 2018 Dec; 108():379-392. PubMed ID: 30268059
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A Framework for User Adaptation and Profiling for Social Robotics in Rehabilitation.
    Martín A; Pulido JC; González JC; García-Olaya Á; Suárez C
    Sensors (Basel); 2020 Aug; 20(17):. PubMed ID: 32854446
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Emotion Recognizing by a Robotic Solution Initiative (EMOTIVE Project).
    D'Onofrio G; Fiorini L; Sorrentino A; Russo S; Ciccone F; Giuliani F; Sancarlo D; Cavallo F
    Sensors (Basel); 2022 Apr; 22(8):. PubMed ID: 35458845
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Detecting compensatory movements of stroke survivors using pressure distribution data and machine learning algorithms.
    Cai S; Li G; Zhang X; Huang S; Zheng H; Ma K; Xie L
    J Neuroeng Rehabil; 2019 Nov; 16(1):131. PubMed ID: 31684970
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Evaluating Rehabilitation Progress Using Motion Features Identified by Machine Learning.
    Lu L; Tan Y; Klaic M; Galea MP; Khan F; Oliver A; Mareels I; Oetomo D; Zhao E
    IEEE Trans Biomed Eng; 2021 Apr; 68(4):1417-1428. PubMed ID: 33156776
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Social Robotics in Therapy of Apraxia of Speech.
    Castillo JC; Álvarez-Fernández D; Alonso-Martín F; Marques-Villarroya S; Salichs MA
    J Healthc Eng; 2018; 2018():7075290. PubMed ID: 29713440
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Trends in Robotics Research in Occupational Safety and Health: A Scientometric Analysis and Review.
    Liang CJ; Cheng MH
    Int J Environ Res Public Health; 2023 May; 20(10):. PubMed ID: 37239630
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Converging Robotic Technologies in Targeted Neural Rehabilitation: A Review of Emerging Solutions and Challenges.
    Nizamis K; Athanasiou A; Almpani S; Dimitrousis C; Astaras A
    Sensors (Basel); 2021 Mar; 21(6):. PubMed ID: 33809721
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Robotics, motor learning, and neurologic recovery.
    Reinkensmeyer DJ; Emken JL; Cramer SC
    Annu Rev Biomed Eng; 2004; 6():497-525. PubMed ID: 15255778
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Machine-Learning Assisted Electronic Skins Capable of Proprioception and Exteroception in Soft Robotics.
    Shu S; Wang Z; Chen P; Zhong J; Tang W; Wang ZL
    Adv Mater; 2023 May; 35(18):e2211385. PubMed ID: 36750731
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Surgical robotics beyond enhanced dexterity instrumentation: a survey of machine learning techniques and their role in intelligent and autonomous surgical actions.
    Kassahun Y; Yu B; Tibebu AT; Stoyanov D; Giannarou S; Metzen JH; Vander Poorten E
    Int J Comput Assist Radiol Surg; 2016 Apr; 11(4):553-68. PubMed ID: 26450107
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Artificial intelligence: Implications for the future of work.
    Howard J
    Am J Ind Med; 2019 Nov; 62(11):917-926. PubMed ID: 31436850
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Adaptive hybrid robotic system for rehabilitation of reaching movement after a brain injury: a usability study.
    Resquín F; Gonzalez-Vargas J; Ibáñez J; Brunetti F; Dimbwadyo I; Carrasco L; Alves S; Gonzalez-Alted C; Gomez-Blanco A; Pons JL
    J Neuroeng Rehabil; 2017 Oct; 14(1):104. PubMed ID: 29025427
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Encoding primitives generation policy learning for robotic arm to overcome catastrophic forgetting in sequential multi-tasks learning.
    Xiong F; Liu Z; Huang K; Yang X; Qiao H; Hussain A
    Neural Netw; 2020 Sep; 129():163-173. PubMed ID: 32535306
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Expanding stroke telerehabilitation services to rural veterans: a qualitative study on patient experiences using the robotic stroke therapy delivery and monitoring system program.
    Cherry CO; Chumbler NR; Richards K; Huff A; Wu D; Tilghman LM; Butler A
    Disabil Rehabil Assist Technol; 2017 Jan; 12(1):21-27. PubMed ID: 26135221
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Dentronics: Towards robotics and artificial intelligence in dentistry.
    Grischke J; Johannsmeier L; Eich L; Griga L; Haddadin S
    Dent Mater; 2020 Jun; 36(6):765-778. PubMed ID: 32349877
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Algorithms and the future of work.
    Howard J
    Am J Ind Med; 2022 Dec; 65(12):943-952. PubMed ID: 36128686
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Virtual Reality-Based Framework to Simulate Control Algorithms for Robotic Assistance and Rehabilitation Tasks through a Standing Wheelchair.
    Ortiz JS; Palacios-Navarro G; Andaluz VH; Guevara BS
    Sensors (Basel); 2021 Jul; 21(15):. PubMed ID: 34372320
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.