These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

214 related articles for article (PubMed ID: 32253777)

  • 1. Mu opioid receptor in microglia contributes to morphine analgesic tolerance, hyperalgesia, and withdrawal in mice.
    Reiss D; Maduna T; Maurin H; Audouard E; Gaveriaux-Ruff C
    J Neurosci Res; 2022 Jan; 100(1):203-219. PubMed ID: 32253777
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Morphine-induced hyperalgesia involves mu opioid receptors and the metabolite morphine-3-glucuronide.
    Roeckel LA; Utard V; Reiss D; Mouheiche J; Maurin H; Robé A; Audouard E; Wood JN; Goumon Y; Simonin F; Gaveriaux-Ruff C
    Sci Rep; 2017 Sep; 7(1):10406. PubMed ID: 28871199
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Loss of μ opioid receptor signaling in nociceptors, but not microglia, abrogates morphine tolerance without disrupting analgesia.
    Corder G; Tawfik VL; Wang D; Sypek EI; Low SA; Dickinson JR; Sotoudeh C; Clark JD; Barres BA; Bohlen CJ; Scherrer G
    Nat Med; 2017 Feb; 23(2):164-173. PubMed ID: 28092666
    [TBL] [Abstract][Full Text] [Related]  

  • 4. μ-Opioid receptors in primary sensory neurons are essential for opioid analgesic effect on acute and inflammatory pain and opioid-induced hyperalgesia.
    Sun J; Chen SR; Chen H; Pan HL
    J Physiol; 2019 Mar; 597(6):1661-1675. PubMed ID: 30578671
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mu Opioid Splice Variant MOR-1K Contributes to the Development of Opioid-Induced Hyperalgesia.
    Oladosu FA; Conrad MS; O'Buckley SC; Rashid NU; Slade GD; Nackley AG
    PLoS One; 2015; 10(8):e0135711. PubMed ID: 26270813
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mu opioid receptors on primary afferent nav1.8 neurons contribute to opiate-induced analgesia: insight from conditional knockout mice.
    Weibel R; Reiss D; Karchewski L; Gardon O; Matifas A; Filliol D; Becker JA; Wood JN; Kieffer BL; Gaveriaux-Ruff C
    PLoS One; 2013; 8(9):e74706. PubMed ID: 24069332
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Positive allosteric modulation of the cannabinoid type-1 receptor (CB1R) in periaqueductal gray (PAG) antagonizes anti-nociceptive and cellular effects of a mu-opioid receptor agonist in morphine-withdrawn rats.
    Datta U; Kelley LK; Middleton JW; Gilpin NW
    Psychopharmacology (Berl); 2020 Dec; 237(12):3729-3739. PubMed ID: 32857187
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Opioid-induced hyperalgesia: Cellular and molecular mechanisms.
    Roeckel LA; Le Coz GM; Gavériaux-Ruff C; Simonin F
    Neuroscience; 2016 Dec; 338():160-182. PubMed ID: 27346146
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Genetic deletion of microglial Panx1 attenuates morphine withdrawal, but not analgesic tolerance or hyperalgesia in mice.
    Burma NE; Leduc-Pessah H; Trang T
    Channels (Austin); 2017 Sep; 11(5):487-494. PubMed ID: 28745932
    [TBL] [Abstract][Full Text] [Related]  

  • 10. δ-Opioid receptors in primary sensory neurons tonically restrain nociceptive input in chronic pain but do not enhance morphine analgesic tolerance.
    Jin D; Chen H; Huang Y; Chen SR; Pan HL
    Neuropharmacology; 2022 Oct; 217():109202. PubMed ID: 35917874
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Genetic dissociation of morphine analgesia from hyperalgesia in mice.
    Marrone GF; Le Rouzic V; Varadi A; Xu J; Rajadhyaksha AM; Majumdar S; Pan YX; Pasternak GW
    Psychopharmacology (Berl); 2017 Jun; 234(12):1891-1900. PubMed ID: 28343361
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A murine model of opioid-induced hyperalgesia.
    Li X; Angst MS; Clark JD
    Brain Res Mol Brain Res; 2001 Jan; 86(1-2):56-62. PubMed ID: 11165371
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Chronic Morphine-Induced Changes in Signaling at the A
    Doyle TM; Largent-Milnes TM; Chen Z; Staikopoulos V; Esposito E; Dalgarno R; Fan C; Tosh DK; Cuzzocrea S; Jacobson KA; Trang T; Hutchinson MR; Bennett GJ; Vanderah TW; Salvemini D
    J Pharmacol Exp Ther; 2020 Aug; 374(2):331-341. PubMed ID: 32434943
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Antinociceptive effects of morphine and naloxone in mu-opioid receptor knockout mice transfected with the MORS196A gene.
    Chen SL; Ma HI; Han JM; Lu RB; Tao PL; Law PY; Loh HH
    J Biomed Sci; 2010 Apr; 17(1):28. PubMed ID: 20403204
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Naloxone rapidly evokes endogenous kappa opioid receptor-mediated hyperalgesia in naïve mice pretreated briefly with GM1 ganglioside or in chronic morphine-dependent mice.
    Crain SM; Shen KF
    Brain Res; 2007 Sep; 1167():31-41. PubMed ID: 17692296
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The contribution of MOR-1 exons 1-4 to morphine and heroin analgesia and dependence.
    Klein G; Rossi GC; Waxman AR; Arout C; Juni A; Inturrisi CE; Kest B
    Neurosci Lett; 2009 Jul; 457(3):115-9. PubMed ID: 19429175
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Botulinum toxin A increases analgesic effects of morphine, counters development of morphine tolerance and modulates glia activation and μ opioid receptor expression in neuropathic mice.
    Vacca V; Marinelli S; Luvisetto S; Pavone F
    Brain Behav Immun; 2013 Aug; 32():40-50. PubMed ID: 23402794
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Pinocembrin alleviates chronic morphine-induced analgesic tolerance and hyperalgesia by inhibiting microglial activation.
    Han D; Dong W; Jiang W
    Neurol Res; 2022 Oct; 44(10):946-955. PubMed ID: 35574904
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The mechanism of μ-opioid receptor (MOR)-TRPV1 crosstalk in TRPV1 activation involves morphine anti-nociception, tolerance and dependence.
    Bao Y; Gao Y; Yang L; Kong X; Yu J; Hou W; Hua B
    Channels (Austin); 2015; 9(5):235-43. PubMed ID: 26176938
    [TBL] [Abstract][Full Text] [Related]  

  • 20. BK channels in microglia are required for morphine-induced hyperalgesia.
    Hayashi Y; Morinaga S; Zhang J; Satoh Y; Meredith AL; Nakata T; Wu Z; Kohsaka S; Inoue K; Nakanishi H
    Nat Commun; 2016 May; 7():11697. PubMed ID: 27241733
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.