These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 32254047)

  • 1. Ising models of charge storage in multifile metallic nanopores.
    Zaboronsky AO; Kornyshev AA
    J Phys Condens Matter; 2020 Jun; 32(27):275201. PubMed ID: 32254047
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Single-file charge storage in conducting nanopores.
    Lee AA; Kondrat S; Kornyshev AA
    Phys Rev Lett; 2014 Jul; 113(4):048701. PubMed ID: 25105658
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The simplest model of charge storage in single file metallic nanopores.
    Kornyshev AA
    Faraday Discuss; 2013; 164():117-33. PubMed ID: 24466661
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Interionic interactions in conducting nanoconfinement.
    Rochester CC; Lee AA; Pruessner G; Kornyshev AA
    Chemphyschem; 2013 Dec; 14(18):4121-5. PubMed ID: 24311321
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Superionic liquids in conducting nanoslits: A variety of phase transitions and ensuing charging behavior.
    Dudka M; Kondrat S; Bénichou O; Kornyshev AA; Oshanin G
    J Chem Phys; 2019 Nov; 151(18):184105. PubMed ID: 31731872
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Molecular dynamics simulations of atomically flat and nanoporous electrodes with a molten salt electrolyte.
    Vatamanu J; Borodin O; Smith GD
    Phys Chem Chem Phys; 2010 Jan; 12(1):170-82. PubMed ID: 20024457
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Feeling Your Neighbors across the Walls: How Interpore Ionic Interactions Affect Capacitive Energy Storage.
    Kondrat S; Vasilyev OA; Kornyshev AA
    J Phys Chem Lett; 2019 Aug; 10(16):4523-4527. PubMed ID: 31318564
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Capacitive energy storage in single-file pores: Exactly solvable models and simulations.
    Verkholyak T; Kuzmak A; Kondrat S
    J Chem Phys; 2021 Nov; 155(17):174112. PubMed ID: 34742202
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A superionic state in nano-porous double-layer capacitors: insights from Monte Carlo simulations.
    Kondrat S; Georgi N; Fedorov MV; Kornyshev AA
    Phys Chem Chem Phys; 2011 Jun; 13(23):11359-66. PubMed ID: 21566824
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Studies on Possible Ion-Confinement in Nanopore for Enhanced Supercapacitor Performance in 4V EMIBF
    Deng J; Li J; Xiao Z; Song S; Li L
    Nanomaterials (Basel); 2019 Nov; 9(12):. PubMed ID: 31766673
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Can ionophobic nanopores enhance the energy storage capacity of electric-double-layer capacitors containing nonaqueous electrolytes?
    Lian C; Liu H; Henderson D; Wu J
    J Phys Condens Matter; 2016 Oct; 28(41):414005. PubMed ID: 27546561
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Charging dynamics of supercapacitors with narrow cylindrical nanopores.
    Lee AA; Kondrat S; Oshanin G; Kornyshev AA
    Nanotechnology; 2014 Aug; 25(31):315401. PubMed ID: 25026503
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ionic exclusion phase transition in neutral and weakly charged cylindrical nanopores.
    Buyukdagli S; Manghi M; Palmeri J
    J Chem Phys; 2011 Feb; 134(7):074706. PubMed ID: 21341868
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Unraveling the potential and pore-size dependent capacitance of slit-shaped graphitic carbon pores in aqueous electrolytes.
    Kalluri RK; Biener MM; Suss ME; Merrill MD; Stadermann M; Santiago JG; Baumann TF; Biener J; Striolo A
    Phys Chem Chem Phys; 2013 Feb; 15(7):2309-20. PubMed ID: 23295944
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of pore size and surface charge on Na ion storage in carbon nanopores.
    Karatrantos A; Cai Q
    Phys Chem Chem Phys; 2016 Nov; 18(44):30761-30769. PubMed ID: 27796383
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dynamic Charge Storage in Ionic Liquids-Filled Nanopores: Insight from a Computational Cyclic Voltammetry Study.
    He Y; Huang J; Sumpter BG; Kornyshev AA; Qiao R
    J Phys Chem Lett; 2015 Jan; 6(1):22-30. PubMed ID: 26263086
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Voltage-Rectified Current and Fluid Flow in Conical Nanopores.
    Lan WJ; Edwards MA; Luo L; Perera RT; Wu X; Martin CR; White HS
    Acc Chem Res; 2016 Nov; 49(11):2605-2613. PubMed ID: 27689816
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Theorization on ion-exchange equilibria: activity of species in 2-D phases.
    Tamura H
    J Colloid Interface Sci; 2004 Nov; 279(1):1-22. PubMed ID: 15380407
    [TBL] [Abstract][Full Text] [Related]  

  • 19. On the Atomistic Nature of Capacitance Enhancement Generated by Ionic Liquid Electrolyte Confined in Subnanometer Pores.
    Xing L; Vatamanu J; Borodin O; Bedrov D
    J Phys Chem Lett; 2013 Jan; 4(1):132-40. PubMed ID: 26291225
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Restricted primitive model for electrolyte solutions in slit-like pores with grafted chains: microscopic structure, thermodynamics of adsorption, and electric properties from a density functional approach.
    Pizio O; Sokołowski S
    J Chem Phys; 2013 May; 138(20):204715. PubMed ID: 23742508
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.