These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

205 related articles for article (PubMed ID: 32254084)

  • 1. On the advancement of polymeric bicontinuous nanospheres toward biomedical applications.
    Allen SD; Bobbala S; Karabin NB; Scott EA
    Nanoscale Horiz; 2019 Mar; 4(2):258-272. PubMed ID: 32254084
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Benchmarking Bicontinuous Nanospheres against Polymersomes for in Vivo Biodistribution and Dual Intracellular Delivery of Lipophilic and Water-Soluble Payloads.
    Allen SD; Bobbala S; Karabin NB; Modak M; Scott EA
    ACS Appl Mater Interfaces; 2018 Oct; 10(40):33857-33866. PubMed ID: 30213189
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Magnetic Nanostructure-Loaded Bicontinuous Nanospheres Support Multicargo Intracellular Delivery and Oxidation-Responsive Morphological Transitions.
    Modak M; Bobbala S; Lescott C; Liu YG; Nandwana V; Dravid VP; Scott EA
    ACS Appl Mater Interfaces; 2020 Dec; 12(50):55584-55595. PubMed ID: 33259182
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Topical drug delivery by a polymeric nanosphere gel: Formulation optimization and in vitro and in vivo skin distribution studies.
    Batheja P; Sheihet L; Kohn J; Singer AJ; Michniak-Kohn B
    J Control Release; 2011 Jan; 149(2):159-67. PubMed ID: 20950659
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Recent progress and challenges for polymeric microsphere compared to nanosphere drug release systems: Is there a real difference?
    Alavi M; Webster TJ
    Bioorg Med Chem; 2021 Mar; 33():116028. PubMed ID: 33508639
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Improving paclitaxel delivery: in vitro and in vivo characterization of PEGylated polyphosphoester-based nanocarriers.
    Zhang F; Zhang S; Pollack SF; Li R; Gonzalez AM; Fan J; Zou J; Leininger SE; Pavía-Sanders A; Johnson R; Nelson LD; Raymond JE; Elsabahy M; Hughes DM; Lenox MW; Gustafson TP; Wooley KL
    J Am Chem Soc; 2015 Feb; 137(5):2056-66. PubMed ID: 25629952
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Stimuli-responsive polymersomes as nanocarriers for drug and gene delivery.
    Onaca O; Enea R; Hughes DW; Meier W
    Macromol Biosci; 2009 Feb; 9(2):129-39. PubMed ID: 19107717
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Self-assembled multicompartment liquid crystalline lipid carriers for protein, peptide, and nucleic acid drug delivery.
    Angelova A; Angelov B; Mutafchieva R; Lesieur S; Couvreur P
    Acc Chem Res; 2011 Feb; 44(2):147-56. PubMed ID: 21189042
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Utilization of microfluidic V-junction device to prepare surface itraconazole adsorbed nanospheres.
    Kucuk I; Ahmad Z; Edirisinghe M; Orlu-Gul M
    Int J Pharm; 2014 Sep; 472(1-2):339-46. PubMed ID: 24945138
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Polymeric micelles as drug carriers: their lights and shadows.
    Yokoyama M
    J Drug Target; 2014 Aug; 22(7):576-83. PubMed ID: 25012065
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Thermoresponsive nanospheres with independent dual drug release profiles for the treatment of osteoarthritis.
    Kang ML; Kim JE; Im GI
    Acta Biomater; 2016 Jul; 39():65-78. PubMed ID: 27155347
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cubosomes as an emerging platform for drug delivery: a review of the state of the art.
    Abourehab MAS; Ansari MJ; Singh A; Hassan A; Abdelgawad MA; Shrivastav P; Abualsoud BM; Amaral LS; Pramanik S
    J Mater Chem B; 2022 Apr; 10(15):2781-2819. PubMed ID: 35315858
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Sugar-based amphiphilic polymers for biomedical applications: from nanocarriers to therapeutics.
    Gu L; Faig A; Abdelhamid D; Uhrich K
    Acc Chem Res; 2014 Oct; 47(10):2867-77. PubMed ID: 25141069
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Co-polymeric hydrophilic nanospheres for drug delivery: release kinetics, and cellular uptake.
    Verma AK; Chanchal A; Maitra A
    Indian J Exp Biol; 2010 Oct; 48(10):1043-52. PubMed ID: 21299047
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Hyperbranched polymer vesicles: from self-assembly, characterization, mechanisms, and properties to applications.
    Jiang W; Zhou Y; Yan D
    Chem Soc Rev; 2015 Jun; 44(12):3874-89. PubMed ID: 25336064
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cubosomes: Versatile Nanosized Formulation for Efficient Delivery of Therapeutics.
    Singhal K; Kaushik N; Kumar A
    Curr Drug Deliv; 2022; 19(6):644-657. PubMed ID: 34238187
    [TBL] [Abstract][Full Text] [Related]  

  • 17. In vitro studies of serum albumin interaction with poly(D,L-lactide) nanospheres loaded by hydrophobic cargo.
    Pietkiewicz J; Wilk KA; Bazylińska U
    J Pharm Biomed Anal; 2016 Jan; 117():426-35. PubMed ID: 26452101
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Polymeric vesicles: from drug carriers to nanoreactors and artificial organelles.
    Tanner P; Baumann P; Enea R; Onaca O; Palivan C; Meier W
    Acc Chem Res; 2011 Oct; 44(10):1039-49. PubMed ID: 21608994
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Preparation, characterization, in vivo pharmacokinetics, and biodistribution of polymeric micellar dimethoxycurcumin for tumor targeting.
    Liu H; Xu H; Jiang Y; Hao S; Gong F; Mu H; Liu K
    Int J Nanomedicine; 2015; 10():6395-410. PubMed ID: 26504386
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Liposomes to Cubosomes: The Evolution of Lipidic Nanocarriers and Their Cutting-Edge Biomedical Applications.
    Attri N; Das S; Banerjee J; Shamsuddin SH; Dash SK; Pramanik A
    ACS Appl Bio Mater; 2024 May; 7(5):2677-2694. PubMed ID: 38613498
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.