These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

718 related articles for article (PubMed ID: 32254090)

  • 1. DePEGylation strategies to increase cancer nanomedicine efficacy.
    Kong L; Campbell F; Kros A
    Nanoscale Horiz; 2019 Mar; 4(2):378-387. PubMed ID: 32254090
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Role of integrated cancer nanomedicine in overcoming drug resistance.
    Iyer AK; Singh A; Ganta S; Amiji MM
    Adv Drug Deliv Rev; 2013 Nov; 65(13-14):1784-802. PubMed ID: 23880506
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Factors Influencing the Delivery Efficiency of Cancer Nanomedicines.
    Ullah R; Wazir J; Khan FU; Diallo MT; Ihsan AU; Mikrani R; Aquib M; Zhou X
    AAPS PharmSciTech; 2020 May; 21(4):132. PubMed ID: 32409932
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Combining Nanomedicine and Immunotherapy.
    Shi Y; Lammers T
    Acc Chem Res; 2019 Jun; 52(6):1543-1554. PubMed ID: 31120725
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Targeting tumor microenvironment with PEG-based amphiphilic nanoparticles to overcome chemoresistance.
    Chen S; Yang K; Tuguntaev RG; Mozhi A; Zhang J; Wang PC; Liang XJ
    Nanomedicine; 2016 Feb; 12(2):269-86. PubMed ID: 26707818
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nanomedicines Targeting the Tumor Microenvironment.
    Tong R; Langer R
    Cancer J; 2015; 21(4):314-21. PubMed ID: 26222084
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Copolymers of poly(lactic acid) and D-α-tocopheryl polyethylene glycol 1000 succinate-based nanomedicines: versatile multifunctional platforms for cancer diagnosis and therapy.
    Vijayakumar MR; Muthu MS; Singh S
    Expert Opin Drug Deliv; 2013 Apr; 10(4):529-43. PubMed ID: 23316695
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The rise and rise of stealth nanocarriers for cancer therapy: passive versus active targeting.
    Huynh NT; Roger E; Lautram N; Benoît JP; Passirani C
    Nanomedicine (Lond); 2010 Nov; 5(9):1415-33. PubMed ID: 21128723
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Tumor-Targeting Glycol Chitosan Nanoparticles for Cancer Heterogeneity.
    Ryu JH; Yoon HY; Sun IC; Kwon IC; Kim K
    Adv Mater; 2020 Dec; 32(51):e2002197. PubMed ID: 33051905
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nanomedicines for advanced cancer treatments: Transitioning towards responsive systems.
    van Elk M; Murphy BP; Eufrásio-da-Silva T; O'Reilly DP; Vermonden T; Hennink WE; Duffy GP; Ruiz-Hernández E
    Int J Pharm; 2016 Dec; 515(1-2):132-164. PubMed ID: 27725268
    [TBL] [Abstract][Full Text] [Related]  

  • 11. To PEGylate or not to PEGylate: Immunological properties of nanomedicine's most popular component, polyethylene glycol and its alternatives.
    Shi D; Beasock D; Fessler A; Szebeni J; Ljubimova JY; Afonin KA; Dobrovolskaia MA
    Adv Drug Deliv Rev; 2022 Jan; 180():114079. PubMed ID: 34902516
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Improved Targeting of Cancers with Nanotherapeutics.
    Foster C; Watson A; Kaplinsky J; Kamaly N
    Methods Mol Biol; 2017; 1530():13-37. PubMed ID: 28150194
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Chitosan Nanoparticles for Targeted Cancer Therapy: A Review of Stimuli-Responsive, Passive, and Active Targeting Strategies.
    Al-Shadidi JRMH; Al-Shammari S; Al-Mutairi D; Alkhudhair D; Thu HE; Hussain Z
    Int J Nanomedicine; 2024; 19():8373-8400. PubMed ID: 39161363
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nanomedicine therapeutic approaches to overcome cancer drug resistance.
    Markman JL; Rekechenetskiy A; Holler E; Ljubimova JY
    Adv Drug Deliv Rev; 2013 Nov; 65(13-14):1866-79. PubMed ID: 24120656
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Smart surface coating of drug nanoparticles with cross-linkable polyethylene glycol for bio-responsive and highly efficient drug delivery.
    Wei W; Zhang X; Chen X; Zhou M; Xu R; Zhang X
    Nanoscale; 2016 Apr; 8(15):8118-25. PubMed ID: 27025546
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The effect of surface poly(ethylene glycol) length on in vivo drug delivery behaviors of polymeric nanoparticles.
    Wang JL; Du XJ; Yang JX; Shen S; Li HJ; Luo YL; Iqbal S; Xu CF; Ye XD; Cao J; Wang J
    Biomaterials; 2018 Nov; 182():104-113. PubMed ID: 30114562
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hyperthermia approaches for enhanced delivery of nanomedicines to solid tumors.
    Frazier N; Ghandehari H
    Biotechnol Bioeng; 2015 Oct; 112(10):1967-83. PubMed ID: 25995079
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Combination antitumor therapy with targeted dual-nanomedicines.
    Dai W; Wang X; Song G; Liu T; He B; Zhang H; Wang X; Zhang Q
    Adv Drug Deliv Rev; 2017 Jun; 115():23-45. PubMed ID: 28285944
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Multifunctional sharp pH-responsive nanoparticles for targeted drug delivery and effective breast cancer therapy.
    Yao Y; Saw PE; Nie Y; Wong PP; Jiang L; Ye X; Chen J; Ding T; Xu L; Yao H; Hu H; Xu X
    J Mater Chem B; 2019 Jan; 7(4):576-585. PubMed ID: 32254791
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Designing Stimuli-Responsive Upconversion Nanoparticles that Exploit the Tumor Microenvironment.
    Ovais M; Mukherjee S; Pramanik A; Das D; Mukherjee A; Raza A; Chen C
    Adv Mater; 2020 Jun; 32(22):e2000055. PubMed ID: 32227413
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 36.