These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
226 related articles for article (PubMed ID: 32254129)
1. Understanding charge transfer and recombination by interface engineering for improving the efficiency of PbS quantum dot solar cells. Ding C; Zhang Y; Liu F; Kitabatake Y; Hayase S; Toyoda T; Wang R; Yoshino K; Minemoto T; Shen Q Nanoscale Horiz; 2018 Jul; 3(4):417-429. PubMed ID: 32254129 [TBL] [Abstract][Full Text] [Related]
2. Recombination Suppression in PbS Quantum Dot Heterojunction Solar Cells by Energy-Level Alignment in the Quantum Dot Active Layers. Ding C; Zhang Y; Liu F; Nakazawa N; Huang Q; Hayase S; Ogomi Y; Toyoda T; Wang R; Shen Q ACS Appl Mater Interfaces; 2018 Aug; 10(31):26142-26152. PubMed ID: 28862833 [TBL] [Abstract][Full Text] [Related]
3. Effective Charge Collection of Electron Transport Layers for High-Performance Quantum Dot Infrared Solar Cells. Wang M; Liu S; Wei A; Luo T; Wen X; Li MY; Lu H ACS Appl Mater Interfaces; 2024 May; 16(19):24572-24579. PubMed ID: 38690767 [TBL] [Abstract][Full Text] [Related]
4. Preventing interfacial recombination in colloidal quantum dot solar cells by doping the metal oxide. Ehrler B; Musselman KP; Böhm ML; Morgenstern FS; Vaynzof Y; Walker BJ; Macmanus-Driscoll JL; Greenham NC ACS Nano; 2013 May; 7(5):4210-20. PubMed ID: 23531107 [TBL] [Abstract][Full Text] [Related]
6. Improving the photovoltaic performance for PbS QD thin film solar cells through interface engineering. Yang Y; Rao Z; Xu Q; Liang Y; Yang L J Colloid Interface Sci; 2022 Dec; 627():562-568. PubMed ID: 35870408 [TBL] [Abstract][Full Text] [Related]
7. Sn-Doped Zinc Oxide as an Electron Transporting Layer for Enhanced Performance in PbS Quantum Dot Solar Cells. Park M; Lim C; Lee H; Kang B; Hwang HW; Kim SK; Lee P; Kim W; Yu H; Kim T ACS Appl Mater Interfaces; 2024 Jun; 16(25):32375-32384. PubMed ID: 38869189 [TBL] [Abstract][Full Text] [Related]
8. Reduction of recombination at the interface of perovskite and electron transport layer with graded pt quantum dot doping in ambient air-processed perovskite solar cell. Mohammadi S; Akbari Nia S; Abbaszadeh D Sci Rep; 2024 Oct; 14(1):24254. PubMed ID: 39414975 [TBL] [Abstract][Full Text] [Related]
9. Quantum Dot Interface-Mediated CsPbIBr Qi X; Wang J; Tan F; Dong C; Liu K; Li X; Zhang L; Wu H; Wang HL; Qu S; Wang Z; Wang Z ACS Appl Mater Interfaces; 2021 Nov; 13(46):55349-55357. PubMed ID: 34762401 [TBL] [Abstract][Full Text] [Related]
10. Unlocking the Potential of Colloidal Quantum Dot/Organic Hybrid Solar Cells: Band Tunable Interfacial Layer Approach. Lee J; Kim B; Kim C; Lee MH; Kozakci I; Cho S; Kim B; Lee SY; Kim J; Oh J; Lee JY ACS Appl Mater Interfaces; 2023 Aug; 15(33):39408-39416. PubMed ID: 37555937 [TBL] [Abstract][Full Text] [Related]
11. Investigation of Exciton Recombination Zone in Quantum Dot Light-Emitting Diodes Using a Fluorescent Probe. Huang X; Zhang H; Xu D; Wen F; Chen S ACS Appl Mater Interfaces; 2017 Aug; 9(33):27809-27816. PubMed ID: 28730806 [TBL] [Abstract][Full Text] [Related]
12. Reducing Interface Recombination through Mixed Nanocrystal Interlayers in PbS Quantum Dot Solar Cells. Pradhan S; Stavrinadis A; Gupta S; Konstantatos G ACS Appl Mater Interfaces; 2017 Aug; 9(33):27390-27395. PubMed ID: 28787128 [TBL] [Abstract][Full Text] [Related]
13. Reduced Carrier Recombination in PbS - CuInS2 Quantum Dot Solar Cells. Sun Z; Sitbon G; Pons T; Bakulin AA; Chen Z Sci Rep; 2015 May; 5():10626. PubMed ID: 26024021 [TBL] [Abstract][Full Text] [Related]
14. Highly Efficient Perovskite Solar Cells with Gradient Bilayer Electron Transport Materials. Gong X; Sun Q; Liu S; Liao P; Shen Y; Grätzel C; Zakeeruddin SM; Grätzel M; Wang M Nano Lett; 2018 Jun; 18(6):3969-3977. PubMed ID: 29782799 [TBL] [Abstract][Full Text] [Related]
15. Highly Efficient Flexible Quantum Dot Solar Cells with Improved Electron Extraction Using MgZnO Nanocrystals. Zhang X; Santra PK; Tian L; Johansson MB; Rensmo H; Johansson EMJ ACS Nano; 2017 Aug; 11(8):8478-8487. PubMed ID: 28763616 [TBL] [Abstract][Full Text] [Related]
16. Colloidal PbS quantum dot solar cells with high fill factor. Zhao N; Osedach TP; Chang LY; Geyer SM; Wanger D; Binda MT; Arango AC; Bawendi MG; Bulovic V ACS Nano; 2010 Jul; 4(7):3743-52. PubMed ID: 20590129 [TBL] [Abstract][Full Text] [Related]
17. Suppressing Charge Extraction Loss in Quantum Dot Infrared Photovoltaics by Optimizing the Charge Transport Layer. Liu S; Wang M; Luo T; Wei A; Li MY; Lu H; Wen X J Phys Chem Lett; 2024 Aug; 15(33):8427-8433. PubMed ID: 39116387 [TBL] [Abstract][Full Text] [Related]
18. In situ interface engineering for probing the limit of quantum dot photovoltaic devices. Dong H; Xu F; Sun Z; Wu X; Zhang Q; Zhai Y; Tan XD; He L; Xu T; Zhang Z; Duan X; Sun L Nat Nanotechnol; 2019 Oct; 14(10):950-956. PubMed ID: 31451758 [TBL] [Abstract][Full Text] [Related]
19. High-Performance Quantum Dot Light-Emitting Diodes Based on Al-Doped ZnO Nanoparticles Electron Transport Layer. Sun Y; Wang W; Zhang H; Su Q; Wei J; Liu P; Chen S; Zhang S ACS Appl Mater Interfaces; 2018 Jun; 10(22):18902-18909. PubMed ID: 29745643 [TBL] [Abstract][Full Text] [Related]
20. Unraveling the Organic and Inorganic Passivation Mechanism of ZnO Nanowires for Construction of Efficient Bulk Heterojunction Quantum Dot Solar Cells. Wei Y; Nakamura M; Ding C; Liu D; Li H; Li Y; Yang Y; Wang D; Wang R; Hayase S; Masuda T; Shen Q ACS Appl Mater Interfaces; 2022 Aug; 14(31):36268-36276. PubMed ID: 35894431 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]