BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

101 related articles for article (PubMed ID: 32254183)

  • 1. Micropatterned poly(d,l-lactide-co-caprolactone) films entrapped with gelatin for promoting the alignment and directional migration of Schwann cells.
    Zhang D; Xu S; Wu S; Gao C
    J Mater Chem B; 2018 Feb; 6(8):1226-1237. PubMed ID: 32254183
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Micropatterned biodegradable polyesters clicked with CQAASIKVAV promote cell alignment, directional migration, and neurite outgrowth.
    Zhang D; Wu S; Feng J; Duan Y; Xing D; Gao C
    Acta Biomater; 2018 Jul; 74():143-155. PubMed ID: 29768188
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Modulation of spreading, proliferation, and differentiation of human mesenchymal stem cells on gelatin-immobilized poly(L-lactide-co--caprolactone) substrates.
    Shin YM; Kim KS; Lim YM; Nho YC; Shin H
    Biomacromolecules; 2008 Jul; 9(7):1772-81. PubMed ID: 18558737
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Micropatterned Poly(D,L-Lactide-Co-Caprolactone) Conduits With KHI-Peptide and NGF Promote Peripheral Nerve Repair After Severe Traction Injury.
    Yu X; Zhang D; Liu C; Liu Z; Li Y; Zhao Q; Gao C; Wang Y
    Front Bioeng Biotechnol; 2021; 9():744230. PubMed ID: 34957063
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Micropatterns and peptide gradient on the inner surface of a guidance conduit synergistically promotes nerve regeneration
    Zhang D; Li Z; Shi H; Yao Y; Du W; Lu P; Liang K; Hong L; Gao C
    Bioact Mater; 2022 Mar; 9():134-146. PubMed ID: 34820561
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Optimization of micropatterned poly(lactic-co-glycolic acid) films for enhancing dorsal root ganglion cell orientation and extension.
    Li CW; Davis B; Shea J; Sant H; Gale BK; Agarwal J
    Neural Regen Res; 2018 Jan; 13(1):105-111. PubMed ID: 29451214
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The effect of gelatin incorporation into electrospun poly(L-lactide-co-epsilon-caprolactone) fibers on mechanical properties and cytocompatibility.
    Lee J; Tae G; Kim YH; Park IS; Kim SH; Kim SH
    Biomaterials; 2008 Apr; 29(12):1872-9. PubMed ID: 18234330
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Electrospun gelatin/poly(L-lactide-co-epsilon-caprolactone) nanofibers for mechanically functional tissue-engineering scaffolds.
    Jeong SI; Lee AY; Lee YM; Shin H
    J Biomater Sci Polym Ed; 2008; 19(3):339-57. PubMed ID: 18325235
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Human articular chondrocyte adhesion and proliferation on synthetic biodegradable polymer films.
    Ishaug-Riley SL; Okun LE; Prado G; Applegate MA; Ratcliffe A
    Biomaterials; 1999 Dec; 20(23-24):2245-56. PubMed ID: 10614931
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Electrospun silk fibroin/poly(lactide-co-ε-caprolactone) nanofibrous scaffolds for bone regeneration.
    Wang Z; Lin M; Xie Q; Sun H; Huang Y; Zhang D; Yu Z; Bi X; Chen J; Wang J; Shi W; Gu P; Fan X
    Int J Nanomedicine; 2016; 11():1483-500. PubMed ID: 27114708
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Preparation of gelatin density gradient on poly(ε-caprolactone) membrane and its influence on adhesion and migration of endothelial cells.
    Yu S; Mao Z; Gao C
    J Colloid Interface Sci; 2015 Aug; 451():177-83. PubMed ID: 25897854
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Functional composite nanofibers of poly(lactide-co-caprolactone) containing gelatin-apatite bone mimetic precipitate for bone regeneration.
    Jegal SH; Park JH; Kim JH; Kim TH; Shin US; Kim TI; Kim HW
    Acta Biomater; 2011 Apr; 7(4):1609-17. PubMed ID: 21145435
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Modulation of osteogenic differentiation of human mesenchymal stem cells by poly[(L-lactide)-co-(epsilon-caprolactone)]/gelatin nanofibers.
    Rim NG; Lee JH; Jeong SI; Lee BK; Kim CH; Shin H
    Macromol Biosci; 2009 Aug; 9(8):795-804. PubMed ID: 19434677
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Micropatterned Schwann cell-seeded biodegradable polymer substrates significantly enhance neurite alignment and outgrowth.
    Miller C; Jeftinija S; Mallapragada S
    Tissue Eng; 2001 Dec; 7(6):705-15. PubMed ID: 11749728
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Time-dependent mussel-inspired functionalization of poly(L-lactide-co-ɛ-caprolactone) substrates for tunable cell behaviors.
    Shin YM; Lee YB; Shin H
    Colloids Surf B Biointerfaces; 2011 Oct; 87(1):79-87. PubMed ID: 21605961
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comparison of Poly(l-lactide-co-ɛ-caprolactone) and Poly(trimethylene carbonate) Membranes for Urethral Regeneration: An In Vitro and In Vivo Study.
    Sartoneva R; Nordback PH; Haimi S; Grijpma DW; Lehto K; Rooney N; Seppänen-Kaijansinkko R; Miettinen S; Lahdes-Vasama T
    Tissue Eng Part A; 2018 Jan; 24(1-2):117-127. PubMed ID: 28463605
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Controlled release of FK506 from micropatterned PLGA films: potential for application in peripheral nerve repair.
    Davis B; Wojtalewicz S; Labroo P; Shea J; Sant H; Gale B; Agarwal J
    Neural Regen Res; 2018 Jul; 13(7):1247-1252. PubMed ID: 30028334
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Conductive micropatterned polyurethane films as tissue engineering scaffolds for Schwann cells and PC12 cells.
    Wu Y; Wang L; Hu T; Ma PX; Guo B
    J Colloid Interface Sci; 2018 May; 518():252-262. PubMed ID: 29471202
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of functionalized micropatterned PLGA on guided neurite growth.
    Yao L; Wang S; Cui W; Sherlock R; O'Connell C; Damodaran G; Gorman A; Windebank A; Pandit A
    Acta Biomater; 2009 Feb; 5(2):580-8. PubMed ID: 18835227
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Oriented Schwann cell growth on micropatterned biodegradable polymer substrates.
    Miller C; Shanks H; Witt A; Rutkowski G; Mallapragada S
    Biomaterials; 2001 Jun; 22(11):1263-9. PubMed ID: 11336298
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.