BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

207 related articles for article (PubMed ID: 32254274)

  • 21. Electroactive metal-organic framework composites: Design and biosensing application.
    Liao X; Fu H; Yan T; Lei J
    Biosens Bioelectron; 2019 Dec; 146():111743. PubMed ID: 31586760
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Graphene-Templated Synthesis of Magnetic Metal Organic Framework Nanocomposites for Selective Enrichment of Biomolecules.
    Cheng G; Wang ZG; Denagamage S; Zheng SY
    ACS Appl Mater Interfaces; 2016 Apr; 8(16):10234-42. PubMed ID: 27046460
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Metal-Organic Frameworks: A Potential Platform for Enzyme Immobilization and Related Applications.
    Xia H; Li N; Zhong X; Jiang Y
    Front Bioeng Biotechnol; 2020; 8():695. PubMed ID: 32695766
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Magnetic nanoflowers: a hybrid platform for enzyme immobilization.
    Patil PD; Kelkar RK; Patil NP; Pise PV; Patil SP; Patil AS; Kulkarni NS; Tiwari MS; Phirke AN; Nadar SS
    Crit Rev Biotechnol; 2023 Jul; ():1-22. PubMed ID: 37455411
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Site Isolation in Metal-Organic Frameworks Enables Novel Transition Metal Catalysis.
    Drake T; Ji P; Lin W
    Acc Chem Res; 2018 Sep; 51(9):2129-2138. PubMed ID: 30129753
    [TBL] [Abstract][Full Text] [Related]  

  • 26. General Deposition of Metal-Organic Frameworks on Highly Adaptive Organic-Inorganic Hybrid Electrospun Fibrous Substrates.
    Liu C; Wu YN; Morlay C; Gu Y; Gebremariam B; Yuan X; Li F
    ACS Appl Mater Interfaces; 2016 Feb; 8(4):2552-61. PubMed ID: 26741023
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Controllable Synthesis of Hemoglobin-Metal Phosphate Organic-Inorganic Hybrid Nanoflowers and Their Applications in Biocatalysis.
    Gao J; Liu H; Tong C
    Inorg Chem; 2023 Aug; 62(34):13812-13823. PubMed ID: 37584534
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Amino acids-incorporated nanoflowers with an intrinsic peroxidase-like activity.
    Wu ZF; Wang Z; Zhang Y; Ma YL; He CY; Li H; Chen L; Huo QS; Wang L; Li ZQ
    Sci Rep; 2016 Mar; 6():22412. PubMed ID: 26926099
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Metal-organic frameworks based hybrid nanocomposites as state-of-the-art analytical tools for electrochemical sensing applications.
    Rasheed T; Rizwan K
    Biosens Bioelectron; 2022 Mar; 199():113867. PubMed ID: 34890884
    [TBL] [Abstract][Full Text] [Related]  

  • 30. [Development of metal-organic framework composites in sample pretreatment].
    Meng Z; Zhang L; Huang Y
    Se Pu; 2018 Mar; 36(3):216-221. PubMed ID: 30136498
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Transformation of Metal-Organic Frameworks/Coordination Polymers into Functional Nanostructured Materials: Experimental Approaches Based on Mechanistic Insights.
    Lee KJ; Lee JH; Jeoung S; Moon HR
    Acc Chem Res; 2017 Nov; 50(11):2684-2692. PubMed ID: 28990760
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Electrochemical Aptasensors Based on Hybrid Metal-Organic Frameworks.
    Evtugyn G; Belyakova S; Porfireva A; Hianik T
    Sensors (Basel); 2020 Dec; 20(23):. PubMed ID: 33291498
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Mesoporous Metal-Organic Frameworks: Synthetic Strategies and Emerging Applications.
    Liu D; Zou D; Zhu H; Zhang J
    Small; 2018 Sep; 14(37):e1801454. PubMed ID: 30073756
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Metal-Organic Frameworks (MOFs) and Their Composites as Emerging Biomaterials for Osteoarthritis Treatment.
    Wong HL; Tsang CY; Beyer S
    Biomimetics (Basel); 2023 Feb; 8(1):. PubMed ID: 36975327
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Postsynthetic Tuning of Metal-Organic Frameworks for Targeted Applications.
    Islamoglu T; Goswami S; Li Z; Howarth AJ; Farha OK; Hupp JT
    Acc Chem Res; 2017 Apr; 50(4):805-813. PubMed ID: 28177217
    [TBL] [Abstract][Full Text] [Related]  

  • 36. State-of-the-Art Advances and Challenges of Iron-Based Metal Organic Frameworks from Attractive Features, Synthesis to Multifunctional Applications.
    Xia Q; Wang H; Huang B; Yuan X; Zhang J; Zhang J; Jiang L; Xiong T; Zeng G
    Small; 2019 Jan; 15(2):e1803088. PubMed ID: 30548176
    [TBL] [Abstract][Full Text] [Related]  

  • 37. MOFs-carbon hybrid nanocomposites in environmental protection applications.
    Sule R; Mishra AK
    Environ Sci Pollut Res Int; 2020 May; 27(14):16004-16018. PubMed ID: 32170617
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Highly Fluorescent Metal-Organic-Framework Nanocomposites for Photonic Applications.
    Monguzzi A; Ballabio M; Yanai N; Kimizuka N; Fazzi D; Campione M; Meinardi F
    Nano Lett; 2018 Jan; 18(1):528-534. PubMed ID: 29232950
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Metal-organic frameworks: from molecules/metal ions to crystals to superstructures.
    Carné-Sánchez A; Imaz I; Stylianou KC; Maspoch D
    Chemistry; 2014 Apr; 20(18):5192-201. PubMed ID: 24643892
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Metal organic frameworks in electrochemical and optical sensing platforms: a review.
    Anik Ü; Timur S; Dursun Z
    Mikrochim Acta; 2019 Feb; 186(3):196. PubMed ID: 30788595
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.