These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
199 related articles for article (PubMed ID: 32254337)
1. Synthesis of a BODIPY disulfonate near-infrared fluorescence-enhanced probe with high selectivity to endogenous glutathione and two-photon fluorescent turn-on through thiol-induced S Xia X; Qian Y; Shen B J Mater Chem B; 2018 May; 6(19):3023-3029. PubMed ID: 32254337 [TBL] [Abstract][Full Text] [Related]
2. A highly sensitive two-photon fluorescent probe for glutathione with near-infrared emission at 719 nm and intracellular glutathione imaging. Huang C; Qian Y Spectrochim Acta A Mol Biomol Spectrosc; 2019 Jun; 217():68-76. PubMed ID: 30927573 [TBL] [Abstract][Full Text] [Related]
3. NIR two-photon fluorescent probe for biothiol detection and imaging of living cells in vivo. Xia X; Qian Y Analyst; 2018 Oct; 143(21):5218-5224. PubMed ID: 30270379 [TBL] [Abstract][Full Text] [Related]
4. Meso-aryltellurium-BODIPY-based fluorescence turn-on probe for selective, sensitive and fast glutathione sensing in HepG2 cells. Wan QH; Gu M; Shi WJ; Tang YX; Lu Y; Xu C; Chen XS; Wu XT; Gao L; Han DX; Niu L Talanta; 2024 Jan; 267():125251. PubMed ID: 37776804 [TBL] [Abstract][Full Text] [Related]
5. A near-infrared-emission aza-BODIPY-based fluorescent probe for fast, selective, and "turn-on" detection of HClO/ClO Shi WJ; Feng LX; Wang X; Huang Y; Wei YF; Huang YY; Ma HJ; Wang W; Xiang M; Gao L Talanta; 2021 Oct; 233():122581. PubMed ID: 34215073 [TBL] [Abstract][Full Text] [Related]
6. A dual-selective fluorescent probe for GSH and Cys detection: Emission and pH dependent selectivity. Tang Y; Jin L; Yin B Anal Chim Acta; 2017 Nov; 993():87-95. PubMed ID: 29078959 [TBL] [Abstract][Full Text] [Related]
7. A near-infrared fluorescent probe with a large Stokes shift for the detection and imaging of biothiols in vitro and in vivo. Wu Z; Zhao T; Jiang X; Zhang D; Wang F; Ren X; Wang Z; Wang E; Ren J Anal Bioanal Chem; 2024 Nov; 416(28):6485-6495. PubMed ID: 39322801 [TBL] [Abstract][Full Text] [Related]
8. A NIR rhodamine fluorescent chemodosimeter specific for glutathione: Knoevenagel condensation, detection of intracellular glutathione and living cell imaging. Tong L; Qian Y J Mater Chem B; 2018 Mar; 6(12):1791-1798. PubMed ID: 32254251 [TBL] [Abstract][Full Text] [Related]
9. Styryl-BODIPY based red-emitting fluorescent OFF-ON molecular probe for specific detection of cysteine. Shao J; Guo H; Ji S; Zhao J Biosens Bioelectron; 2011 Feb; 26(6):3012-7. PubMed ID: 21195598 [TBL] [Abstract][Full Text] [Related]
10. A near-infrared fluorescent probe based on BODIPY derivative with high quantum yield for selective detection of exogenous and endogenous cysteine in biological samples. Li SJ; Fu YJ; Li CY; Li YF; Yi LH; Ou-Yang J Anal Chim Acta; 2017 Nov; 994():73-81. PubMed ID: 29126471 [TBL] [Abstract][Full Text] [Related]
11. A BODIPY-based turn-on fluorescent probe for the selective detection of hydrogen sulfide in solution and in cells. Wang J; Yu H; Li Q; Shao S Talanta; 2015 Nov; 144():763-8. PubMed ID: 26452888 [TBL] [Abstract][Full Text] [Related]
12. A FRET-based near-infrared ratiometric fluorescent probe for detection of mitochondria biothiol. Wang L; Wang J; Xia S; Wang X; Yu Y; Zhou H; Liu H Talanta; 2020 Nov; 219():121296. PubMed ID: 32887038 [TBL] [Abstract][Full Text] [Related]
13. A fluorescence enhancement probe based on BODIPY for the discrimination of cysteine from homocysteine and glutathione. Gong D; Tian Y; Yang C; Iqbal A; Wang Z; Liu W; Qin W; Zhu X; Guo H Biosens Bioelectron; 2016 Nov; 85():178-183. PubMed ID: 27176916 [TBL] [Abstract][Full Text] [Related]
14. Biocompatibility FeOOH QD@ATP-BODIPY nanocomposite for glutathione detection and intracellular imaging. Tong L; Wang X; Sun C; Lu R; Chen T; Wang J; Chen Z; Tang B Talanta; 2024 Aug; 276():126251. PubMed ID: 38761657 [TBL] [Abstract][Full Text] [Related]
15. Rhodol-based far-red fluorescent probe for the detection of cysteine and homocysteine over glutathione. Liu Y; Xiang K; Tian B; Zhang J Luminescence; 2017 Feb; 32(1):78-85. PubMed ID: 27097836 [TBL] [Abstract][Full Text] [Related]
16. Simultaneous detection of cysteine and glutathione in food with a two-channel near-infrared fluorescent probe. Hu X; Duan R; Wang J; Li M; Chen H; Zhang J; Zeng L Spectrochim Acta A Mol Biomol Spectrosc; 2025 Jan; 325():125098. PubMed ID: 39255549 [TBL] [Abstract][Full Text] [Related]
17. Determination of non-protein cysteine in human serum by a designed BODIPY-based fluorescent probe. Lu J; Sun C; Chen W; Ma H; Shi W; Li X Talanta; 2011 Jan; 83(3):1050-6. PubMed ID: 21147356 [TBL] [Abstract][Full Text] [Related]
18. A multi-emissive fluorescent probe for the discrimination of glutathione and cysteine. Liu XL; Niu LY; Chen YZ; Yang Y; Yang QZ Biosens Bioelectron; 2017 Apr; 90():403-409. PubMed ID: 27825881 [TBL] [Abstract][Full Text] [Related]
19. A near-infrared Nile red fluorescent probe for the discrimination of biothiols by dual-channel response and its bioimaging applications in living cells and animals. Lan JS; Zeng RF; Liu Y; Xiang YW; Jiang XY; Liu L; Xie SS; Ding Y; Zhang T Analyst; 2019 Jun; 144(11):3676-3684. PubMed ID: 31086902 [TBL] [Abstract][Full Text] [Related]
20. A colorimetric and ratiometric fluorescent probe for selective detection and cellular imaging of glutathione. Xu C; Li H; Yin B Biosens Bioelectron; 2015 Oct; 72():275-81. PubMed ID: 25988996 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]