These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

157 related articles for article (PubMed ID: 32254377)

  • 1. A silk-based coating containing GREDVY peptide and heparin on Mg-Zn-Y-Nd alloy: improved corrosion resistance, hemocompatibility and endothelialization.
    Wang P; Xiong P; Liu J; Gao S; Xi T; Cheng Y
    J Mater Chem B; 2018 Feb; 6(6):966-978. PubMed ID: 32254377
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Hemocompatibility and selective cell fate of polydopamine-assisted heparinized PEO/PLLA composite coating on biodegradable AZ31 alloy.
    Wei Z; Tian P; Liu X; Zhou B
    Colloids Surf B Biointerfaces; 2014 Sep; 121():451-60. PubMed ID: 25009102
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A novel biodegradable and biologically functional arginine-based poly(ester urea urethane) coating for Mg-Zn-Y-Nd alloy: enhancement in corrosion resistance and biocompatibility.
    Liu J; Wang P; Chu CC; Xi T
    J Mater Chem B; 2017 Mar; 5(9):1787-1802. PubMed ID: 32263920
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Conjugating heparin, Arg-Glu-Asp-Val peptide, and anti-CD34 to the silanic Mg-Zn-Y-Nd alloy for better endothelialization.
    Wu Y; Chang L; Li J; Wang L; Guan S
    J Biomater Appl; 2020 Aug; 35(2):158-168. PubMed ID: 32436815
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Arginine-leucine based poly (ester urea urethane) coating for Mg-Zn-Y-Nd alloy in cardiovascular stent applications.
    Liu J; Wang P; Chu CC; Xi T
    Colloids Surf B Biointerfaces; 2017 Nov; 159():78-88. PubMed ID: 28780463
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Layered double hydroxide/poly-dopamine composite coating with surface heparinization on Mg alloys: improved anticorrosion, endothelialization and hemocompatibility.
    Li H; Peng F; Wang D; Qiao Y; Xu D; Liu X
    Biomater Sci; 2018 Jun; 6(7):1846-1858. PubMed ID: 29789824
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Study on the Mg-Li-Zn ternary alloy system with improved mechanical properties, good degradation performance and different responses to cells.
    Liu Y; Wu Y; Bian D; Gao S; Leeflang S; Guo H; Zheng Y; Zhou J
    Acta Biomater; 2017 Oct; 62():418-433. PubMed ID: 28823717
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Enhanced in Vitro and in Vivo Performance of Mg-Zn-Y-Nd Alloy Achieved with APTES Pretreatment for Drug-Eluting Vascular Stent Application.
    Liu J; Zheng B; Wang P; Wang X; Zhang B; Shi Q; Xi T; Chen M; Guan S
    ACS Appl Mater Interfaces; 2016 Jul; 8(28):17842-58. PubMed ID: 27331417
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Systematical evolution on a Zn-Mg alloy potentially developed for biodegradable cardiovascular stents.
    Lin S; Ran X; Yan X; Wang Q; Zhou JG; Hu T; Wang G
    J Mater Sci Mater Med; 2019 Nov; 30(11):122. PubMed ID: 31677119
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Immobilization of bioactive complex on the surface of magnesium alloy stent material to simultaneously improve anticorrosion, hemocompatibility and antibacterial activities.
    Pan C; Zhao Y; Yang Y; Yang M; Hong Q; Yang Z; Zhang Q
    Colloids Surf B Biointerfaces; 2021 Mar; 199():111541. PubMed ID: 33360929
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Corrosion behavior and biocompatibility evaluation of a novel zinc-based alloy stent in rabbit carotid artery model.
    Lin S; Ran X; Yan X; Yan W; Wang Q; Yin T; Zhou JG; Hu T; Wang G
    J Biomed Mater Res B Appl Biomater; 2019 Aug; 107(6):1814-1823. PubMed ID: 30408310
    [TBL] [Abstract][Full Text] [Related]  

  • 12. In Vitro and in Vivo Studies on Two-Step Alkali-Fluoride-Treated Mg-Zn-Y-Nd Alloy for Vascular Stent Application: Enhancement in Corrosion Resistance and Biocompatibility.
    Wang P; Liu J; Shen S; Li Q; Luo X; Xiong P; Gao S; Yan J; Cheng Y; Xi T
    ACS Biomater Sci Eng; 2019 Jul; 5(7):3279-3292. PubMed ID: 33405571
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Green Tea Polyphenol Induced Mg
    Zhang B; Yao R; Li L; Wang Y; Luo R; Yang L; Wang Y
    ACS Appl Mater Interfaces; 2019 Nov; 11(44):41165-41177. PubMed ID: 31651138
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A surface-eroding poly(1,3-trimethylene carbonate) coating for fully biodegradable magnesium-based stent applications: toward better biofunction, biodegradation and biocompatibility.
    Wang J; He Y; Maitz MF; Collins B; Xiong K; Guo L; Yun Y; Wan G; Huang N
    Acta Biomater; 2013 Nov; 9(10):8678-89. PubMed ID: 23467041
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Corrosion resistance and biocompatibility of magnesium alloy modified by alkali heating treatment followed by the immobilization of poly (ethylene glycol), fibronectin and heparin.
    Pan C; Hu Y; Hou Y; Liu T; Lin Y; Ye W; Hou Y; Gong T
    Mater Sci Eng C Mater Biol Appl; 2017 Jan; 70(Pt 1):438-449. PubMed ID: 27770914
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Direct surface modification of metallic biomaterials via tyrosine oxidation aiming to accelerate the re-endothelialization of vascular stents.
    Kakinoki S; Takasaki K; Mahara A; Ehashi T; Hirano Y; Yamaoka T
    J Biomed Mater Res A; 2018 Feb; 106(2):491-499. PubMed ID: 28975703
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Synthesis of Star 6-Arm Polyethylene Glycol-Heparin Copolymer to Construct Anticorrosive and Biocompatible Coating on Magnesium Alloy Surface.
    Hong Q; Zhou H; Cheng Y; Yang M; Zhang Q; Liu S; Xiong Q; Pan C
    Front Bioeng Biotechnol; 2022; 10():853487. PubMed ID: 35223805
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fabrication and characterization of silk fibroin coating on APTES pretreated Mg-Zn-Ca alloy.
    Wang C; Fang H; Hang C; Sun Y; Peng Z; Wei W; Wang Y
    Mater Sci Eng C Mater Biol Appl; 2020 May; 110():110742. PubMed ID: 32204050
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Silk Fibroin as a Coating Polymer for Sirolimus-Eluting Magnesium Alloy Stents.
    Xu W; Yagoshi K; Asakura T; Sasaki M; Niidome T
    ACS Appl Bio Mater; 2020 Jan; 3(1):531-538. PubMed ID: 35019396
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of self-assembly of 3-phosphonopropionic acid, 3-aminopropyltrimethoxysilane and dopamine on the corrosion behaviors and biocompatibility of a magnesium alloy.
    Pan CJ; Hou Y; Wang YN; Gao F; Liu T; Hou YH; Zhu YF; Ye W; Wang LR
    Mater Sci Eng C Mater Biol Appl; 2016 Oct; 67():132-143. PubMed ID: 27287107
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.