These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
177 related articles for article (PubMed ID: 32254420)
21. High performances of dual network PVA hydrogel modified by PVP using borax as the structure-forming accelerator. Huang M; Hou Y; Li Y; Wang D; Zhang L Des Monomers Polym; 2017; 20(1):505-513. PubMed ID: 29491822 [TBL] [Abstract][Full Text] [Related]
22. Preparation, properties and in vitro osteogensis of self-reinforcing injectable hydrogel. Wu H; Zhang X; Wang Z; Chen X; Li Y; Fang J; Zheng S; Zhang L; Li C; Hao L Eur J Pharm Sci; 2024 Jan; 192():106617. PubMed ID: 37865283 [TBL] [Abstract][Full Text] [Related]
23. An injectable platelet lysate-hyaluronic acid hydrogel supports cellular activities and induces chondrogenesis of encapsulated mesenchymal stem cells. Jooybar E; Abdekhodaie MJ; Alvi M; Mousavi A; Karperien M; Dijkstra PJ Acta Biomater; 2019 Jan; 83():233-244. PubMed ID: 30366137 [TBL] [Abstract][Full Text] [Related]
25. Unconfined compression properties of a porous poly(vinyl alcohol)-chitosan-based hydrogel after hydration. Lee SY; Pereira BP; Yusof N; Selvaratnam L; Yu Z; Abbas AA; Kamarul T Acta Biomater; 2009 Jul; 5(6):1919-25. PubMed ID: 19289306 [TBL] [Abstract][Full Text] [Related]
26. 3D Interlayer Slidable Multilayer Nano-Graphene Oxide Acrylate Crosslinked Tough Hydrogel. Liu S; Xu L; Yuan Z; Huang M; Yang T; Chen S Langmuir; 2022 Jul; 38(27):8200-8210. PubMed ID: 35765949 [TBL] [Abstract][Full Text] [Related]
27. Interactions affecting the mechanical properties of macromolecular microsphere composite hydrogels. Jiang F; Huang T; He C; Brown HR; Wang H J Phys Chem B; 2013 Oct; 117(43):13679-87. PubMed ID: 24093971 [TBL] [Abstract][Full Text] [Related]
28. Developing super tough gelatin-based hydrogels by incorporating linear poly(methacrylic acid) to facilitate sacrificial hydrogen bonding. Zhang HJ; Wang L; Wang X; Han Q; You X Soft Matter; 2020 May; 16(20):4723-4727. PubMed ID: 32421136 [TBL] [Abstract][Full Text] [Related]
29. Design of stiff, tough and stretchy hydrogel composites via nanoscale hybrid crosslinking and macroscale fiber reinforcement. Lin S; Cao C; Wang Q; Gonzalez M; Dolbow JE; Zhao X Soft Matter; 2014 Oct; 10(38):7519-27. PubMed ID: 25097115 [TBL] [Abstract][Full Text] [Related]
30. Poly(vinyl alcohol)-Tannic Acid Hydrogels with Excellent Mechanical Properties and Shape Memory Behaviors. Chen YN; Peng L; Liu T; Wang Y; Shi S; Wang H ACS Appl Mater Interfaces; 2016 Oct; 8(40):27199-27206. PubMed ID: 27648478 [TBL] [Abstract][Full Text] [Related]
31. Injectable and Cytocompatible Dual Cross-Linking Hydrogels with Enhanced Mechanical Strength and Stability. Qin Z; Yu X; Wu H; Yang L; Lv H; Yang X ACS Biomater Sci Eng; 2020 Jun; 6(6):3529-3538. PubMed ID: 33463187 [TBL] [Abstract][Full Text] [Related]
32. Preparation of strong and tough conductive hydrogel based on Grafting, Fe Yang Y; Jiang W; Wang Y; Wu C; Chen H; Lyu G; Ma J; Ni Y; Liu Y J Colloid Interface Sci; 2024 May; 661():450-459. PubMed ID: 38308885 [TBL] [Abstract][Full Text] [Related]
33. A Robust, Tough and Multifunctional Polyurethane/Tannic Acid Hydrogel Fabricated by Physical-Chemical Dual Crosslinking. Wen J; Zhang X; Pan M; Yuan J; Jia Z; Zhu L Polymers (Basel); 2020 Jan; 12(1):. PubMed ID: 31963956 [TBL] [Abstract][Full Text] [Related]
34. Tough nanocomposite double network hydrogels reinforced with clay nanorods through covalent bonding and reversible chain adsorption. Gao G; Du G; Cheng Y; Fu J J Mater Chem B; 2014 Mar; 2(11):1539-1548. PubMed ID: 32261372 [TBL] [Abstract][Full Text] [Related]
35. Solvent-Exchange-Assisted Wet Annealing: A New Strategy for Superstrong, Tough, Stretchable, and Anti-Fatigue Hydrogels. Wu Y; Zhang Y; Wu H; Wen J; Zhang S; Xing W; Zhang H; Xue H; Gao J; Mai Y Adv Mater; 2023 Apr; 35(15):e2210624. PubMed ID: 36648109 [TBL] [Abstract][Full Text] [Related]
36. High-Strength, Tough, Fatigue Resistant, and Self-Healing Hydrogel Based on Dual Physically Cross-Linked Network. Gong Z; Zhang G; Zeng X; Li J; Li G; Huang W; Sun R; Wong C ACS Appl Mater Interfaces; 2016 Sep; 8(36):24030-7. PubMed ID: 27548327 [TBL] [Abstract][Full Text] [Related]
37. A gel microparticle-based self-thickening strategy for 3D printing high-modulus hydrogels skeleton cushioned with PNAGA hydrogel mimicking anisotropic mechanics of meniscus. Xu Z; Zhang Q; Fan C; Xiao M; Yang R; Yao Y; Wu Y; Nie X; Wang H; Liu W Bioact Mater; 2023 Aug; 26():64-76. PubMed ID: 36895264 [TBL] [Abstract][Full Text] [Related]
38. Biocompatible Hydroxylated Boron Nitride Nanosheets/Poly(vinyl alcohol) Interpenetrating Hydrogels with Enhanced Mechanical and Thermal Responses. Jing L; Li H; Tay RY; Sun B; Tsang SH; Cometto O; Lin J; Teo EHT; Tok AIY ACS Nano; 2017 Apr; 11(4):3742-3751. PubMed ID: 28345866 [TBL] [Abstract][Full Text] [Related]
39. Mussel byssus cuticle-inspired ultrastiff and stretchable triple-crosslinked hydrogels. Dong C; Fan H; Tang F; Gao X; Feng K; Wang J; Jin Z J Mater Chem B; 2021 Jan; 9(2):373-380. PubMed ID: 33283808 [TBL] [Abstract][Full Text] [Related]
40. Super-tough, ultra-stretchable and strongly compressive hydrogels with core-shell latex particles inducing efficient aggregation of hydrophobic chains. Ren X; Huang C; Duan L; Liu B; Bu L; Guan S; Hou J; Zhang H; Gao G Soft Matter; 2017 May; 13(18):3352-3358. PubMed ID: 28422241 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]