These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
177 related articles for article (PubMed ID: 32254420)
41. 3D Printing of a Double Network Hydrogel with a Compression Strength and Elastic Modulus Greater than those of Cartilage. Yang F; Tadepalli V; Wiley BJ ACS Biomater Sci Eng; 2017 May; 3(5):863-869. PubMed ID: 33440506 [TBL] [Abstract][Full Text] [Related]
42. Injectable Adhesive Hydrogel through a Microcapsule Cross-Link for Periodontitis Treatment. Dong Z; Sun Y; Chen Y; Liu Y; Tang C; Qu X ACS Appl Bio Mater; 2019 Dec; 2(12):5985-5994. PubMed ID: 35021519 [TBL] [Abstract][Full Text] [Related]
43. A tough and self-healing poly(l-glutamic acid)-based composite hydrogel for tissue engineering. Zhang W; Zhang K; Yan S; Wu J; Yin J J Mater Chem B; 2018 Nov; 6(42):6865-6876. PubMed ID: 32254703 [TBL] [Abstract][Full Text] [Related]
44. Self-healable, tough and highly stretchable ionic nanocomposite physical hydrogels. Zhong M; Liu XY; Shi FK; Zhang LQ; Wang XP; Cheetham AG; Cui H; Xie XM Soft Matter; 2015 Jun; 11(21):4235-41. PubMed ID: 25892460 [TBL] [Abstract][Full Text] [Related]
45. Dual-Physical Cross-Linked Tough and Photoluminescent Hydrogels with Good Biocompatibility and Antibacterial Activity. Hu C; Wang MX; Sun L; Yang JH; Zrínyi M; Chen YM Macromol Rapid Commun; 2017 May; 38(10):. PubMed ID: 28295772 [TBL] [Abstract][Full Text] [Related]
46. Microparticulate poly(vinyl alcohol) hydrogel formulations for embedding and controlled release of polyethylenimine (PEI)-based nanoparticles. Schulze J; Hendrikx S; Schulz-Siegmund M; Aigner A Acta Biomater; 2016 Nov; 45():210-222. PubMed ID: 27592816 [TBL] [Abstract][Full Text] [Related]
47. An evaluation of the thermal and mechanical properties of a salt-modified polyvinyl alcohol hydrogel for a knee meniscus application. Curley C; Hayes JC; Rowan NJ; Kennedy JE J Mech Behav Biomed Mater; 2014 Dec; 40():13-22. PubMed ID: 25190433 [TBL] [Abstract][Full Text] [Related]
48. Toughening Double-Network Hydrogels by Polyelectrolytes. Zhang M; Yang Y; Li M; Shang Q; Xie R; Yu J; Shen K; Zhang Y; Cheng Y Adv Mater; 2023 Jun; 35(26):e2301551. PubMed ID: 36940146 [TBL] [Abstract][Full Text] [Related]
49. Mechanical properties of a novel PVA hydrogel in shear and unconfined compression. Stammen JA; Williams S; Ku DN; Guldberg RE Biomaterials; 2001 Apr; 22(8):799-806. PubMed ID: 11246948 [TBL] [Abstract][Full Text] [Related]
50. Ultra-Tough Self-Healing Hydrogel via Hierarchical Energy Associative Dissipation. Zhao Z; Li Y; Wang H; Shan Y; Liu X; Wu M; Zhang X; Song X Adv Sci (Weinh); 2023 Sep; 10(27):e2303315. PubMed ID: 37505367 [TBL] [Abstract][Full Text] [Related]
51. Wet-laid soy fiber reinforced hydrogel scaffold: Fabrication, mechano-morphological and cell studies. Wood AT; Everett D; Budhwani KI; Dickinson B; Thomas V Mater Sci Eng C Mater Biol Appl; 2016 Jun; 63():308-16. PubMed ID: 27040224 [TBL] [Abstract][Full Text] [Related]
52. Linear Dynamic Viscoelasticity of Dual Cross-Link Poly(Vinyl Alcohol) Hydrogel with Determined Borate Ion Concentration. Taniguchi T; Urayama K Gels; 2021 Jun; 7(2):. PubMed ID: 34198560 [TBL] [Abstract][Full Text] [Related]
53. Spin-coating-assisted fabrication of ultrathin physical hydrogel films with high toughness and fast response. Zheng SY; Tian Y; Zhang XN; Du M; Song Y; Wu ZL; Zheng Q Soft Matter; 2018 Jul; 14(28):5888-5897. PubMed ID: 29963675 [TBL] [Abstract][Full Text] [Related]
54. Fabrication and characterization of phlorotannins/poly (vinyl alcohol) hydrogel for wound healing application. Park HH; Ko SC; Oh GW; Heo SJ; Kang DH; Bae SY; Jung WK J Biomater Sci Polym Ed; 2018; 29(7-9):972-983. PubMed ID: 28853319 [TBL] [Abstract][Full Text] [Related]
55. Construction of Injectable Double-Network Hydrogels for Cell Delivery. Yan Y; Li M; Yang D; Wang Q; Liang F; Qu X; Qiu D; Yang Z Biomacromolecules; 2017 Jul; 18(7):2128-2138. PubMed ID: 28557440 [TBL] [Abstract][Full Text] [Related]
56. Tough and biocompatible hydrogels based on in situ interpenetrating networks of dithiol-connected graphene oxide and poly(vinyl alcohol). Du G; Nie L; Gao G; Sun Y; Hou R; Zhang H; Chen T; Fu J ACS Appl Mater Interfaces; 2015 Feb; 7(5):3003-8. PubMed ID: 25622181 [TBL] [Abstract][Full Text] [Related]
57. Highly recyclable and super-tough hydrogel mediated by dual-functional TiO Yue Y; Wang X; Wu Q; Han J; Jiang J J Colloid Interface Sci; 2020 Mar; 564():99-112. PubMed ID: 31911232 [TBL] [Abstract][Full Text] [Related]
58. Microstructure-united heterogeneous sodium alginate doped injectable hydrogel for stable hemostasis in dynamic mechanical environments. Zhou Y; Li M; Gao W; Li X; Long L; Hou X; Zhao J; Li S; Yuan X Int J Biol Macromol; 2023 Sep; 248():125877. PubMed ID: 37481189 [TBL] [Abstract][Full Text] [Related]
59. Gum Arabic: A promising candidate for the construction of physical hydrogels exhibiting highly stretchable, self-healing and tensility reinforcing performances. Wu D; Xu J; Chen Y; Yi M; Wang Q Carbohydr Polym; 2018 Feb; 181():167-174. PubMed ID: 29253959 [TBL] [Abstract][Full Text] [Related]
60. Mimicking Dynamic Adhesiveness and Strain-Stiffening Behavior of Biological Tissues in Tough and Self-Healable Cellulose Nanocomposite Hydrogels. Shao C; Meng L; Wang M; Cui C; Wang B; Han CR; Xu F; Yang J ACS Appl Mater Interfaces; 2019 Feb; 11(6):5885-5895. PubMed ID: 30652853 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]