These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

291 related articles for article (PubMed ID: 32254504)

  • 1. Recent developments in smart antibacterial surfaces to inhibit biofilm formation and bacterial infections.
    Li X; Wu B; Chen H; Nan K; Jin Y; Sun L; Wang B
    J Mater Chem B; 2018 Jul; 6(26):4274-4292. PubMed ID: 32254504
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Smart Antibacterial Surfaces with Switchable Bacteria-Killing and Bacteria-Releasing Capabilities.
    Wei T; Tang Z; Yu Q; Chen H
    ACS Appl Mater Interfaces; 2017 Nov; 9(43):37511-37523. PubMed ID: 28992417
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Recent Advances in Surface Nanoengineering for Biofilm Prevention and Control. Part II: Active, Combined Active and Passive, and Smart Bacteria-Responsive Antibiofilm Nanocoatings.
    Balaure PC; Grumezescu AM
    Nanomaterials (Basel); 2020 Aug; 10(8):. PubMed ID: 32759748
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dual-function antibacterial surfaces for biomedical applications.
    Yu Q; Wu Z; Chen H
    Acta Biomater; 2015 Apr; 16():1-13. PubMed ID: 25637065
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Responsive and Synergistic Antibacterial Coatings: Fighting against Bacteria in a Smart and Effective Way.
    Wei T; Yu Q; Chen H
    Adv Healthc Mater; 2019 Feb; 8(3):e1801381. PubMed ID: 30609261
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Optically Responsive, Smart Anti-Bacterial Coatings via the Photofluidization of Azobenzenes.
    Kehe GM; Mori DI; Schurr MJ; Nair DP
    ACS Appl Mater Interfaces; 2019 Jan; 11(2):1760-1765. PubMed ID: 30605328
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Smart Nanomaterials for Treatment of Biofilm in Orthopedic Implants.
    Hong Q; Huo S; Tang H; Qu X; Yue B
    Front Bioeng Biotechnol; 2021; 9():694635. PubMed ID: 34589470
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Enzyme Mimicry for Combating Bacteria and Biofilms.
    Chen Z; Wang Z; Ren J; Qu X
    Acc Chem Res; 2018 Mar; 51(3):789-799. PubMed ID: 29489323
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Antibacterial surfaces developed from bio-inspired approaches.
    Glinel K; Thebault P; Humblot V; Pradier CM; Jouenne T
    Acta Biomater; 2012 May; 8(5):1670-84. PubMed ID: 22289644
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Recent advances in engineering topography mediated antibacterial surfaces.
    Hasan J; Chatterjee K
    Nanoscale; 2015 Oct; 7(38):15568-75. PubMed ID: 26372264
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Recent Advances in Dual-Function Superhydrophobic Antibacterial Surfaces.
    Jia D; Lin Y; Zou Y; Zhang Y; Yu Q
    Macromol Biosci; 2023 Nov; 23(11):e2300191. PubMed ID: 37265089
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Multi-functional approach in the design of smart surfaces to mitigate bacterial infections: a review.
    Rajaramon S; David H; Sajeevan A; Shanmugam K; Sriramulu H; Dandela R; Solomon AP
    Front Cell Infect Microbiol; 2023; 13():1139026. PubMed ID: 37287465
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Inhibition of bacterial adhesion and biofilm formation by dual functional textured and nitric oxide releasing surfaces.
    Xu LC; Wo Y; Meyerhoff ME; Siedlecki CA
    Acta Biomater; 2017 Mar; 51():53-65. PubMed ID: 28087484
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Surface Design for Antibacterial Materials: From Fundamentals to Advanced Strategies.
    Li W; Thian ES; Wang M; Wang Z; Ren L
    Adv Sci (Weinh); 2021 Oct; 8(19):e2100368. PubMed ID: 34351704
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Layer-by-layer self-assembly of minocycline-loaded chitosan/alginate multilayer on titanium substrates to inhibit biofilm formation.
    Lv H; Chen Z; Yang X; Cen L; Zhang X; Gao P
    J Dent; 2014 Nov; 42(11):1464-72. PubMed ID: 24930872
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Anti-biofilm surfaces from mixed dopamine-modified polymer brushes: synergistic role of cationic and zwitterionic chains to resist staphyloccocus aureus.
    He Y; Wan X; Xiao K; Lin W; Li J; Li Z; Luo F; Tan H; Li J; Fu Q
    Biomater Sci; 2019 Dec; 7(12):5369-5382. PubMed ID: 31621697
    [TBL] [Abstract][Full Text] [Related]  

  • 17. In vitro evaluation of a multispecies oral biofilm over antibacterial coated titanium surfaces.
    Vilarrasa J; Delgado LM; Galofré M; Àlvarez G; Violant D; Manero JM; Blanc V; Gil FJ; Nart J
    J Mater Sci Mater Med; 2018 Nov; 29(11):164. PubMed ID: 30392142
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Bio-inspired special wettability in oral antibacterial applications.
    Zhang X; Bai R; Sun Q; Zhuang Z; Zhang Y; Chen S; Han B
    Front Bioeng Biotechnol; 2022; 10():1001616. PubMed ID: 36110327
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Adaptive antibacterial biomaterial surfaces and their applications.
    Ahmed W; Zhai Z; Gao C
    Mater Today Bio; 2019 Mar; 2():100017. PubMed ID: 32159147
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Recent progress in bio-inspired biofilm-resistant polymeric surfaces.
    Cattò C; Villa F; Cappitelli F
    Crit Rev Microbiol; 2018 Sep; 44(5):633-652. PubMed ID: 30016175
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.