These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

94 related articles for article (PubMed ID: 32254737)

  • 1. Tough protein organohydrogels.
    Zhou D; Chen F; Wang J; Li T; Li B; Zhang J; Zhou X; Gan T; Handschuh-Wang S; Zhou X
    J Mater Chem B; 2018 Dec; 6(45):7366-7372. PubMed ID: 32254737
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Rational Fabrication of Anti-Freezing, Non-Drying Tough Organohydrogels by One-Pot Solvent Displacement.
    Chen F; Zhou D; Wang J; Li T; Zhou X; Gan T; Handschuh-Wang S; Zhou X
    Angew Chem Int Ed Engl; 2018 May; 57(22):6568-6571. PubMed ID: 29656553
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Tough Adhesion of Freezing- and Drying-Tolerant Transparent Nanocomposite Organohydrogels.
    Liu B; Li F; Niu P; Li H
    ACS Appl Mater Interfaces; 2021 May; 13(18):21822-21830. PubMed ID: 33913687
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Anti-Freezing, Non-Drying, Localized Stiffening, and Shape-Morphing Organohydrogels.
    Shen J; Du S; Xu Z; Gan T; Handschuh-Wang S; Zhang X
    Gels; 2022 May; 8(6):. PubMed ID: 35735675
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Physical Organohydrogels With Extreme Strength and Temperature Tolerance.
    Zhang JW; Dong DD; Guan XY; Zhang EM; Chen YM; Yang K; Zhang YX; Khan MMB; Arfat Y; Aziz Y
    Front Chem; 2020; 8():102. PubMed ID: 32211372
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Anti-freezing, Conductive Self-healing Organohydrogels with Stable Strain-Sensitivity at Subzero Temperatures.
    Rong Q; Lei W; Chen L; Yin Y; Zhou J; Liu M
    Angew Chem Int Ed Engl; 2017 Nov; 56(45):14159-14163. PubMed ID: 28940584
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ultrastretchable and Stable Strain Sensors Based on Antifreezing and Self-Healing Ionic Organohydrogels for Human Motion Monitoring.
    Wu J; Wu Z; Lu X; Han S; Yang BR; Gui X; Tao K; Miao J; Liu C
    ACS Appl Mater Interfaces; 2019 Mar; 11(9):9405-9414. PubMed ID: 30763515
    [TBL] [Abstract][Full Text] [Related]  

  • 8. 3D Antidrying Antifreezing Artificial Skin Device with Self-Healing and Touch Sensing Capability.
    Shin W; Kim JS; Choi HJ; Kim H; Park S; Lee HJ; Choi MK; Chung K
    Macromol Rapid Commun; 2021 May; 42(9):e2100011. PubMed ID: 33690960
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ultrasensitive and Stretchable Temperature Sensors Based on Thermally Stable and Self-Healing Organohydrogels.
    Wu J; Wu Z; Wei Y; Ding H; Huang W; Gui X; Shi W; Shen Y; Tao K; Xie X
    ACS Appl Mater Interfaces; 2020 Apr; 12(16):19069-19079. PubMed ID: 32237715
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Tough, Transparent, and Anti-Freezing Nanocomposite Organohydrogels with Photochromic Properties.
    Yang J; Tang C; Sun H; Liu Z; Liu Z; Li K; Zhu L; Qin G; Sun G; Li Y; Chen Q
    ACS Appl Mater Interfaces; 2021 Jul; 13(26):31180-31192. PubMed ID: 34180220
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Strong and tough polysaccharide organohydrogels for strain, humidity and temperature sensors.
    Ye L; Yang R; Yu X; Sun X; Liang H
    Soft Matter; 2024 Feb; 20(7):1573-1582. PubMed ID: 38270546
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Protein Crystallization-Mediated Self-Strengthening of High-Performance Printable Conducting Organohydrogels.
    Liu J; Zhang B; Zhang P; Zhao K; Lu Z; Wei H; Zheng Z; Yang R; Yu Y
    ACS Nano; 2022 Nov; 16(11):17998-18008. PubMed ID: 36136126
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Conductive Organohydrogels with Ultrastretchability, Antifreezing, Self-Healing, and Adhesive Properties for Motion Detection and Signal Transmission.
    Yang Y; Guan L; Li X; Gao Z; Ren X; Gao G
    ACS Appl Mater Interfaces; 2019 Jan; 11(3):3428-3437. PubMed ID: 30592212
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Biomimetic Extreme-Temperature- and Environment-Adaptable Hydrogels.
    Zhou D; Chen F; Handschuh-Wang S; Gan T; Zhou X; Zhou X
    Chemphyschem; 2019 Sep; 20(17):2139-2154. PubMed ID: 31321876
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Bioinspired organohydrogels with heterostructures: Fabrications, performances, and applications.
    Zhang Z; Hao J
    Adv Colloid Interface Sci; 2021 Jun; 292():102408. PubMed ID: 33932827
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Synthesis Antifreezing and Antidehydration Organohydrogels: One-Step In-Situ Gelling versus Two-Step Solvent Displacement.
    Li C; Deng X; Zhou X
    Polymers (Basel); 2020 Nov; 12(11):. PubMed ID: 33198210
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Enzymatic mineralization generates ultrastiff and tough hydrogels with tunable mechanics.
    Rauner N; Meuris M; Zoric M; Tiller JC
    Nature; 2017 Mar; 543(7645):407-410. PubMed ID: 28241140
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Environmentally stable, photochromic and thermotropic organohydrogels for low cost on-demand optical devices.
    Zhang Z; Guo L; Zhang X; Hao J
    J Colloid Interface Sci; 2020 Oct; 578():315-325. PubMed ID: 32531561
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Toughening a Self-Healable Supramolecular Polymer by Ionic Cluster-Enhanced Iron-Carboxylate Complexes.
    Deng Y; Zhang Q; Feringa BL; Tian H; Qu DH
    Angew Chem Int Ed Engl; 2020 Mar; 59(13):5278-5283. PubMed ID: 32096593
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Highly tough, anti-fatigue and rapidly self-recoverable hydrogels reinforced with core-shell inorganic-organic hybrid latex particles.
    Xia S; Song S; Ren X; Gao G
    Soft Matter; 2017 Sep; 13(36):6059-6067. PubMed ID: 28776059
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.