BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

672 related articles for article (PubMed ID: 32254855)

  • 1. Development of a near-infrared ratiometric fluorescent probe for glutathione using an intramolecular charge transfer signaling mechanism and its bioimaging application in living cells.
    Zhou Y; Zhang L; Zhang X; Zhu ZJ
    J Mater Chem B; 2019 Feb; 7(5):809-814. PubMed ID: 32254855
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A Near-Infrared Ratiometric Fluorescent Probe for Highly Selective Recognition and Bioimaging of Cysteine.
    Zhang X; Zhang L; Ma WW; Zhou Y; Lu ZN; Xu S
    Front Chem; 2019; 7():32. PubMed ID: 30775362
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A near-infrared Nile red fluorescent probe for the discrimination of biothiols by dual-channel response and its bioimaging applications in living cells and animals.
    Lan JS; Zeng RF; Liu Y; Xiang YW; Jiang XY; Liu L; Xie SS; Ding Y; Zhang T
    Analyst; 2019 Jun; 144(11):3676-3684. PubMed ID: 31086902
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A novel near-infrared fluorescent probe for highly selective detection of cysteine and its application in living cells.
    Zhang W; Liu J; Yu Y; Han Q; Cheng T; Shen J; Wang B; Jiang Y
    Talanta; 2018 Aug; 185():477-482. PubMed ID: 29759230
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Near-Infrared Fluorescent Probe with High Quantum Yield and Its Application in the Selective Detection of Glutathione in Living Cells and Tissues.
    Xie JY; Li CY; Li YF; Fei J; Xu F; Ou-Yang J; Liu J
    Anal Chem; 2016 Oct; 88(19):9746-9752. PubMed ID: 27605432
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A colorimetric and ratiometric fluorescent probe for selective detection and cellular imaging of glutathione.
    Xu C; Li H; Yin B
    Biosens Bioelectron; 2015 Oct; 72():275-81. PubMed ID: 25988996
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cooperation of ESIPT and ICT Processes in the Designed 2-(2'-Hydroxyphenyl)benzothiazole Derivative: A Near-Infrared Two-Photon Fluorescent Probe with a Large Stokes Shift for the Detection of Cysteine and Its Application in Biological Environments.
    Long Y; Liu J; Tian D; Dai F; Zhang S; Zhou B
    Anal Chem; 2020 Oct; 92(20):14236-14243. PubMed ID: 33030891
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ratiometric fluorescent probe based on ESIPT for the highly selective detection of cysteine in living cells.
    Li X; Ma H; Qian J; Cao T; Teng Z; Iqbal K; Qin W; Guo H
    Talanta; 2019 Mar; 194():717-722. PubMed ID: 30609596
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fluorescent probe for sensitive discrimination of Hcy and Cys/GSH in living cells via dual-emission.
    Xu S; Zhou J; Dong X; Zhao W; Zhu Q
    Anal Chim Acta; 2019 Oct; 1074():123-130. PubMed ID: 31159932
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Coumarin-Based Turn-On Fluorescence Probe for Specific Detection of Glutathione over Cysteine and Homocysteine.
    He L; Xu Q; Liu Y; Wei H; Tang Y; Lin W
    ACS Appl Mater Interfaces; 2015 Jun; 7(23):12809-13. PubMed ID: 26016515
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A Novel Dicyanoisophorone-Based Ratiometric Fluorescent Probe for Selective Detection of Cysteine and Its Bioimaging Application in Living Cells.
    Zhang H; Qin N; Fang Z
    Molecules; 2018 Feb; 23(2):. PubMed ID: 29470399
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A dual-selective fluorescent probe for discriminating glutathione and homocysteine simultaneously.
    Huang J; Chen Y; Qi J; Zhou X; Niu L; Yan Z; Wang J; Zhao G
    Spectrochim Acta A Mol Biomol Spectrosc; 2018 Aug; 201():105-111. PubMed ID: 29738890
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A highly sensitive two-photon fluorescent probe for glutathione with near-infrared emission at 719 nm and intracellular glutathione imaging.
    Huang C; Qian Y
    Spectrochim Acta A Mol Biomol Spectrosc; 2019 Jun; 217():68-76. PubMed ID: 30927573
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A new fluorescence turn-on probe for biothiols based on photoinduced electron transfer and its application in living cells.
    Wang J; Zhou C; Zhang J; Zhu X; Liu X; Wang Q; Zhang H
    Spectrochim Acta A Mol Biomol Spectrosc; 2016 Sep; 166():31-37. PubMed ID: 27203232
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A diazabenzoperylene derivative as ratiometric fluorescent probe for cysteine with super large Stokes shift.
    Wang S; Zhang Q; Chen S; Wang KP; Hu ZQ
    Anal Bioanal Chem; 2020 Apr; 412(11):2687-2696. PubMed ID: 32072211
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A long-wavelength fluorescent probe with a large Stokes shift for lysosome-targeted imaging of Cys and GSH.
    Sun YH; Han HH; Huang JM; Li J; Zang Y; Wang CY
    Spectrochim Acta A Mol Biomol Spectrosc; 2021 Nov; 261():120055. PubMed ID: 34153552
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A near-infrared ratiometric fluorescent probe for cysteine detection over glutathione indicating mitochondrial oxidative stress in vivo.
    Yin K; Yu F; Zhang W; Chen L
    Biosens Bioelectron; 2015 Dec; 74():156-64. PubMed ID: 26141101
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Rapid and ratiometric fluorescent detection of cysteine with high selectivity and sensitivity by a simple and readily available probe.
    Liu Y; Yu D; Ding S; Xiao Q; Guo J; Feng G
    ACS Appl Mater Interfaces; 2014 Oct; 6(20):17543-50. PubMed ID: 25253409
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An aza-BODIPY based near-infrared fluorescent probe for sensitive discrimination of cysteine/homocysteine and glutathione in living cells.
    Xiang HJ; Tham HP; Nguyen MD; Fiona Phua SZ; Lim WQ; Liu JG; Zhao Y
    Chem Commun (Camb); 2017 May; 53(37):5220-5223. PubMed ID: 28443883
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A New Lysosome-Targeted NIR Fluorescent Probe for Specific Detection of Cysteine over Homocysteine and Glutathione.
    Liu Q; Liu C; He S; Zeng X; Zhang J; Gong J
    Molecules; 2023 Aug; 28(17):. PubMed ID: 37687018
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 34.