BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

195 related articles for article (PubMed ID: 32254914)

  • 1. Manipulating the mechanical properties of biomimetic hydrogels with multivalent host-guest interactions.
    Yang B; Wei Z; Chen X; Wei K; Bian L
    J Mater Chem B; 2019 Mar; 7(10):1726-1733. PubMed ID: 32254914
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A universal post-treatment strategy for biomimetic composite hydrogel with anisotropic topological structure and wide range of adjustable mechanical properties.
    Zhang X; Wang Y; Wu X; Zhu F; Qin YX; Chen W; Zheng Q
    Biomater Adv; 2022 Feb; 133():112654. PubMed ID: 35067432
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Biomimetic Supramolecular Polymer Networks Exhibiting both Toughness and Self-Recovery.
    Liu J; Tan CS; Yu Z; Lan Y; Abell C; Scherman OA
    Adv Mater; 2017 Mar; 29(10):. PubMed ID: 28092128
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Manufacturing of hydrogel biomaterials with controlled mechanical properties for tissue engineering applications.
    Vedadghavami A; Minooei F; Mohammadi MH; Khetani S; Rezaei Kolahchi A; Mashayekhan S; Sanati-Nezhad A
    Acta Biomater; 2017 Oct; 62():42-63. PubMed ID: 28736220
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mechanically resilient, injectable, and bioadhesive supramolecular gelatin hydrogels crosslinked by weak host-guest interactions assist cell infiltration and in situ tissue regeneration.
    Feng Q; Wei K; Lin S; Xu Z; Sun Y; Shi P; Li G; Bian L
    Biomaterials; 2016 Sep; 101():217-28. PubMed ID: 27294539
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Adaptable hydrogel networks with reversible linkages for tissue engineering.
    Wang H; Heilshorn SC
    Adv Mater; 2015 Jul; 27(25):3717-36. PubMed ID: 25989348
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A super-stretchable, self-healing and injectable supramolecular hydrogel constructed by a host-guest crosslinker.
    Zhou Y; Zhang Y; Dai Z; Jiang F; Tian J; Zhang W
    Biomater Sci; 2020 Jun; 8(12):3359-3369. PubMed ID: 32374313
    [TBL] [Abstract][Full Text] [Related]  

  • 8. High-Strength and High-Toughness Silk Fibroin Hydrogels: A Strategy Using Dynamic Host-Guest Interactions.
    Huang X; Zhang M; Ming J; Ning X; Bai S
    ACS Appl Bio Mater; 2020 Oct; 3(10):7103-7112. PubMed ID: 35019370
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Arginine-Presenting Peptide Hydrogels Decorated with Hydroxyapatite as Biomimetic Scaffolds for Bone Regeneration.
    Ghosh M; Halperin-Sternfeld M; Grigoriants I; Lee J; Nam KT; Adler-Abramovich L
    Biomacromolecules; 2017 Nov; 18(11):3541-3550. PubMed ID: 28825801
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Engineering interpenetrating network hydrogels as biomimetic cell niche with independently tunable biochemical and mechanical properties.
    Tong X; Yang F
    Biomaterials; 2014 Feb; 35(6):1807-15. PubMed ID: 24331710
    [TBL] [Abstract][Full Text] [Related]  

  • 11. 3D-printable self-healing and mechanically reinforced hydrogels with host-guest non-covalent interactions integrated into covalently linked networks.
    Wang Z; An G; Zhu Y; Liu X; Chen Y; Wu H; Wang Y; Shi X; Mao C
    Mater Horiz; 2019 May; 6(4):733-742. PubMed ID: 31572613
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Magnetically Driven Hierarchical Alignment in Biomimetic Fibrous Hydrogels.
    Chen W; Zhang Z; Kouwer PHJ
    Small; 2022 Jul; 18(27):e2203033. PubMed ID: 35665598
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mechanical relaxations of hydrogels governed by their physical or chemical crosslinks.
    Cuenot S; Gélébart P; Sinquin C; Colliec-Jouault S; Zykwinska A
    J Mech Behav Biomed Mater; 2022 Sep; 133():105343. PubMed ID: 35780569
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Multivalency Enables Dynamic Supramolecular Host-Guest Hydrogel Formation.
    Ooi HW; Kocken JMM; Morgan FLC; Malheiro A; Zoetebier B; Karperien M; Wieringa PA; Dijkstra PJ; Moroni L; Baker MB
    Biomacromolecules; 2020 Jun; 21(6):2208-2217. PubMed ID: 32243138
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Facile and cost-effective synthesis of glycogen-based conductive hydrogels with extremely flexible, excellent self-healing and tunable mechanical properties.
    Hussain I; Sayed SM; Fu G
    Int J Biol Macromol; 2018 Oct; 118(Pt B):1463-1469. PubMed ID: 29964106
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Versatile design of hydrogel-based scaffolds with manipulated pore structure for hard-tissue regeneration.
    Kim W; Lee H; Kim Y; Choi CH; Lee D; Hwang H; Kim G
    Biomed Mater; 2016 Sep; 11(5):055002. PubMed ID: 27586518
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Double-network hydrogel and its potential biomedical application: A review.
    Nonoyama T; Gong JP
    Proc Inst Mech Eng H; 2015 Dec; 229(12):853-63. PubMed ID: 26614799
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Influence of physical and mechanical properties of amphiphilic biosynthetic hydrogels on long-term cell viability.
    Thankam FG; Muthu J
    J Mech Behav Biomed Mater; 2014 Jul; 35():111-22. PubMed ID: 24762858
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Tailoring supramolecular guest-host hydrogel viscoelasticity with covalent fibrinogen double networks.
    Loebel C; Ayoub A; Galarraga JH; Kossover O; Simaan-Yameen H; Seliktar D; Burdick JA
    J Mater Chem B; 2019 Mar; 7(10):1753-1760. PubMed ID: 32254917
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of poly(ethylene glycol) molecular weight on tensile and swelling properties of oligo(poly(ethylene glycol) fumarate) hydrogels for cartilage tissue engineering.
    Temenoff JS; Athanasiou KA; LeBaron RG; Mikos AG
    J Biomed Mater Res; 2002 Mar; 59(3):429-37. PubMed ID: 11774300
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.