These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

272 related articles for article (PubMed ID: 32254991)

  • 1. Recent advances of stimuli-responsive systems based on transition metal dichalcogenides for smart cancer therapy.
    Zhou R; Zhu S; Gong L; Fu Y; Gu Z; Zhao Y
    J Mater Chem B; 2019 Apr; 7(16):2588-2607. PubMed ID: 32254991
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The futuristic applications of transition metal dichalcogenides for cancer therapy.
    Nandy SK; Das S; Pandey S; Kalita P; Gupta MK; Kabra A; Wadhwa P; Kumar D
    Luminescence; 2024 May; 39(5):e4771. PubMed ID: 38747206
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mechanism and potentialities of photothermal and photodynamic therapy of transition metal dichalcogenides (TMDCs) against cancer.
    Tyagi N; Arya RKK; Bisht D; Wadhwa P; Kumar Upadhyay T; Kumar Sethiya N; Jindal DK; Pandey S; Kumar D
    Luminescence; 2024 May; 39(5):e4770. PubMed ID: 38751216
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Tumor-targeted and multi-stimuli responsive drug delivery system for near-infrared light induced chemo-phototherapy and photoacoustic tomography.
    Feng Q; Zhang Y; Zhang W; Shan X; Yuan Y; Zhang H; Hou L; Zhang Z
    Acta Biomater; 2016 Jul; 38():129-42. PubMed ID: 27090593
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Stimuli-responsive drug delivery systems for head and neck cancer therapy.
    Liang J; Yang B; Zhou X; Han Q; Zou J; Cheng L
    Drug Deliv; 2021 Dec; 28(1):272-284. PubMed ID: 33501883
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Functionalization of 2D transition metal dichalcogenides for biomedical applications.
    Li Z; Wong SL
    Mater Sci Eng C Mater Biol Appl; 2017 Jan; 70(Pt 2):1095-1106. PubMed ID: 27772710
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Two-dimensional transition metal dichalcogenide nanomaterials for combination cancer therapy.
    Gong L; Yan L; Zhou R; Xie J; Wu W; Gu Z
    J Mater Chem B; 2017 Mar; 5(10):1873-1895. PubMed ID: 32263941
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Recent Advances in Stimuli-Responsive Platforms for Cancer Immunotherapy.
    Li L; Yang Z; Chen X
    Acc Chem Res; 2020 Oct; 53(10):2044-2054. PubMed ID: 32877161
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Recent advances in transition-metal dichalcogenides based electrochemical biosensors: A review.
    Wang YH; Huang KJ; Wu X
    Biosens Bioelectron; 2017 Nov; 97():305-316. PubMed ID: 28618367
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Advances in intelligent-responsive nanocarriers for cancer therapy.
    Tian M; Xin X; Wu R; Guan W; Zhou W
    Pharmacol Res; 2022 Apr; 178():106184. PubMed ID: 35301111
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Recent Advances in Functional Polymer Decorated Two-Dimensional Transition-Metal Dichalcogenides Nanomaterials for Chemo-Photothermal Therapy.
    Zhang A; Li A; Zhao W; Liu J
    Chemistry; 2018 Mar; 24(17):4215-4227. PubMed ID: 29058345
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Classification of stimuli-responsive polymers as anticancer drug delivery systems.
    Taghizadeh B; Taranejoo S; Monemian SA; Salehi Moghaddam Z; Daliri K; Derakhshankhah H; Derakhshani Z
    Drug Deliv; 2015 Feb; 22(2):145-55. PubMed ID: 24547737
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Recent advances in near-infrared light-responsive nanocarriers for cancer therapy.
    Saneja A; Kumar R; Arora D; Kumar S; Panda AK; Jaglan S
    Drug Discov Today; 2018 May; 23(5):1115-1125. PubMed ID: 29481876
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Smart Organic-Inorganic Nanogels for Activatable Theranostics.
    Li F; Liang Z; Ling D
    Curr Med Chem; 2019; 26(8):1366-1376. PubMed ID: 28933302
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Stimuli responsive drug delivery systems based on nano-graphene for cancer therapy.
    Yang K; Feng L; Liu Z
    Adv Drug Deliv Rev; 2016 Oct; 105(Pt B):228-241. PubMed ID: 27233212
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Near-infrared light triggered drug release from mesoporous silica nanoparticles.
    Zhao T; Chen L; Li Q; Li X
    J Mater Chem B; 2018 Nov; 6(44):7112-7121. PubMed ID: 32254627
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Rational Design of Multi-Stimuli-Responsive Nanoparticles for Precise Cancer Therapy.
    An X; Zhu A; Luo H; Ke H; Chen H; Zhao Y
    ACS Nano; 2016 Jun; 10(6):5947-58. PubMed ID: 27285378
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Stimuli-responsive nano-assemblies for remotely controlled drug delivery.
    Li F; Qin Y; Lee J; Liao H; Wang N; Davis TP; Qiao R; Ling D
    J Control Release; 2020 Jun; 322():566-592. PubMed ID: 32276006
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nanostructures for pH-sensitive Drug Delivery and Magnetic Resonance Contrast Enhancement Systems.
    Sun X; Zhang G; Wu Z
    Curr Med Chem; 2018; 25(25):3036-3057. PubMed ID: 28393692
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Stimuli-responsive nanoscale drug delivery systems for cancer therapy.
    Li L; Yang WW; Xu DG
    J Drug Target; 2019 Apr; 27(4):423-433. PubMed ID: 30173577
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.