These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

224 related articles for article (PubMed ID: 32255007)

  • 1. Copolymers containing carbohydrates and other biomolecules: design, synthesis and applications.
    Ma Z; Zhu XX
    J Mater Chem B; 2019 Mar; 7(9):1361-1378. PubMed ID: 32255007
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Sugar-installed block copolymer micelles: their preparation and specific interaction with lectin molecules.
    Nagasaki Y; Yasugi K; Yamamoto Y; Harada A; Kataoka K
    Biomacromolecules; 2001; 2(4):1067-70. PubMed ID: 11777374
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Glycopolymers Bearing Galactose and Betulin: Synthesis, Encapsulation, and Lectin Recognition.
    Ma Z; Jia YG; Zhu XX
    Biomacromolecules; 2017 Nov; 18(11):3812-3818. PubMed ID: 28982003
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Biodegradable micelles/polymersomes from fumaric/sebacic acids and poly(ethylene glycol).
    Najafi F; Sarbolouki MN
    Biomaterials; 2003 Mar; 24(7):1175-82. PubMed ID: 12527258
    [TBL] [Abstract][Full Text] [Related]  

  • 5. PEG-PLA block copolymer as potential drug carrier: preparation and characterization.
    Ben-Shabat S; Kumar N; Domb AJ
    Macromol Biosci; 2006 Dec; 6(12):1019-25. PubMed ID: 17128420
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Recent advances in synthetic bioelastomers.
    Shi R; Chen D; Liu Q; Wu Y; Xu X; Zhang L; Tian W
    Int J Mol Sci; 2009 Nov; 10(10):4223-4256. PubMed ID: 20057942
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Controlling the lectin recognition of glycopolymers via distance arrangement of sugar blocks.
    Jono K; Nagao M; Oh T; Sonoda S; Hoshino Y; Miura Y
    Chem Commun (Camb); 2017 Dec; 54(1):82-85. PubMed ID: 29211064
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Polymers of malic acid and 3-alkylmalic acid as synthetic PHAs in the design of biocompatible hydrolyzable devices.
    Cammas S; Béar MM; Moine L; Escalup R; Ponchel G; Kataoka K; Guérin P
    Int J Biol Macromol; 1999; 25(1-3):273-82. PubMed ID: 10416675
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Tunable Nanocarrier Morphologies from Glycopolypeptide-Based Amphiphilic Biocompatible Star Copolymers and Their Carbohydrate Specific Intracellular Delivery.
    Pati D; Das S; Patil NG; Parekh N; Anjum DH; Dhaware V; Ambade AV; Sen Gupta S
    Biomacromolecules; 2016 Feb; 17(2):466-75. PubMed ID: 26691102
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Synthesis, self-assembly, and drug-loading capacity of well-defined cyclodextrin-centered drug-conjugated amphiphilic A(14)B(7) Miktoarm star copolymers based on poly(epsilon-caprolactone) and poly(ethylene glycol).
    Gou PF; Zhu WP; Shen ZQ
    Biomacromolecules; 2010 Apr; 11(4):934-43. PubMed ID: 20225892
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The influence of pendant hydroxyl groups on enzymatic degradation and drug delivery of amphiphilic poly[glycidol-block-(epsilon-caprolactone)] copolymers.
    Mao J; Gan Z
    Macromol Biosci; 2009 Nov; 9(11):1080-9. PubMed ID: 19634151
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Thermo- and pH-Responsive Copolymers Bearing Cholic Acid and Oligo(ethylene glycol) Pendants: Self-Assembly and pH-Controlled Release.
    Jia YG; Zhu XX
    ACS Appl Mater Interfaces; 2015 Nov; 7(44):24649-55. PubMed ID: 26479835
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Sequence and Architectural Control in Glycopolymer Synthesis.
    Abdouni Y; Yilmaz G; Becer CR
    Macromol Rapid Commun; 2017 Dec; 38(24):. PubMed ID: 28691393
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Synthesis, characterization and application of biodegradable polymer grafted novel bioprosthetic tissue.
    Pal A; Pathak C; Vernon B
    J Biomater Sci Polym Ed; 2018 Feb; 29(3):217-235. PubMed ID: 29161994
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Sugar-based amphiphilic polymers for biomedical applications: from nanocarriers to therapeutics.
    Gu L; Faig A; Abdelhamid D; Uhrich K
    Acc Chem Res; 2014 Oct; 47(10):2867-77. PubMed ID: 25141069
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Synthesis, self-assembly, and in vitro doxorubicin release behavior of dendron-like/linear/dendron-like poly(epsilon-caprolactone)-b-poly(ethylene glycol)-b-poly(epsilon-caprolactone) triblock copolymers.
    Yang Y; Hua C; Dong CM
    Biomacromolecules; 2009 Aug; 10(8):2310-8. PubMed ID: 19618927
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Double hydrophilic block copolymers self-assemblies in biomedical applications.
    El Jundi A; Buwalda SJ; Bakkour Y; Garric X; Nottelet B
    Adv Colloid Interface Sci; 2020 Sep; 283():102213. PubMed ID: 32739324
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Stereoisomerism effect on sugar-lectin binding of self-assembled glyco-nanoparticles of linear and brush copolymers.
    Sun P; Lin M; Zhao Y; Chen G; Jiang M
    Colloids Surf B Biointerfaces; 2015 Sep; 133():12-8. PubMed ID: 26057375
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Synthesis of a family of amphiphilic glycopolymers via controlled ring-opening polymerization of functionalized cyclic carbonates and their application in drug delivery.
    Suriano F; Pratt R; Tan JP; Wiradharma N; Nelson A; Yang YY; Dubois P; Hedrick JL
    Biomaterials; 2010 Mar; 31(9):2637-45. PubMed ID: 20074794
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Characterizing poly(epsilon-caprolactone)-b-chitooligosaccharide-b-poly(ethylene glycol) (PCP) copolymer micelles for doxorubicin (DOX) delivery: effects of crosslinked of amine groups.
    Chung TW; Liu DZ; Hsieh JH; Fan XC; Yang JD; Chen JH
    J Nanosci Nanotechnol; 2006; 6(9-10):2902-11. PubMed ID: 17048497
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.