These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 32255336)

  • 1. Inorganic Nanotube Mesophases Enable Strong Self-Healing Fibers.
    Lee WJ; Paineau E; Anthony DB; Gao Y; Leese HS; Rouzière S; Launois P; Shaffer MSP
    ACS Nano; 2020 May; 14(5):5570-5580. PubMed ID: 32255336
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Continuous Binder-Free Fibers of Pure Imogolite Nanotubes.
    Moore JF; Paineau E; Launois P; Shaffer MSP
    ACS Appl Mater Interfaces; 2021 Apr; 13(15):17940-17947. PubMed ID: 33830735
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Continuous carbon nanotube reinforced composites.
    Ci L; Suhr J; Pushparaj V; Zhang X; Ajayan PM
    Nano Lett; 2008 Sep; 8(9):2762-6. PubMed ID: 18680351
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ultrahigh strength, modulus, and conductivity of graphitic fibers by macromolecular coalescence.
    Lee D; Kim SG; Hong S; Madrona C; Oh Y; Park M; Komatsu N; Taylor LW; Chung B; Kim J; Hwang JY; Yu J; Lee DS; Jeong HS; You NH; Kim ND; Kim DY; Lee HS; Lee KH; Kono J; Wehmeyer G; Pasquali M; Vilatela JJ; Ryu S; Ku BC
    Sci Adv; 2022 Apr; 8(16):eabn0939. PubMed ID: 35452295
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Very-high-strength (60-GPa) carbon nanotube fiber design based on molecular dynamics simulations.
    Cornwell CF; Welch CR
    J Chem Phys; 2011 May; 134(20):204708. PubMed ID: 21639468
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Strong and Stiff: High-Performance Cellulose Nanocrystal/Poly(vinyl alcohol) Composite Fibers.
    Lee WJ; Clancy AJ; Kontturi E; Bismarck A; Shaffer MS
    ACS Appl Mater Interfaces; 2016 Nov; 8(46):31500-31504. PubMed ID: 27933978
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Macroscopic nanotube fibers spun from single-walled carbon nanotube polyelectrolytes.
    Jiang C; Saha A; Young CC; Hashim DP; Ramirez CE; Ajayan PM; Pasquali M; Martí AA
    ACS Nano; 2014 Sep; 8(9):9107-12. PubMed ID: 25162378
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Polymer-Infiltrated Aligned Carbon Nanotube Fibers by in situ Polymerization.
    Zhang S; Zhu L; Wong CP; Kumar S
    Macromol Rapid Commun; 2009 Nov; 30(22):1936-9. PubMed ID: 21638478
    [TBL] [Abstract][Full Text] [Related]  

  • 9. High-Strength Single-Walled Carbon Nanotube/Permalloy Nanoparticle/Poly(vinyl alcohol) Multifunctional Nanocomposite Fiber.
    Zhou G; Wang YQ; Byun JH; Yi JW; Yoon SS; Cha HJ; Lee JU; Oh Y; Jung BM; Moon HJ; Chou TW
    ACS Nano; 2015 Nov; 9(11):11414-21. PubMed ID: 26431310
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Realizing the full nanofiller enhancement in melt-spun fibers of poly(vinylidene fluoride)/carbon nanotube composites.
    Yang J; Chen Q; Chen F; Zhang Q; Wang K; Fu Q
    Nanotechnology; 2011 Sep; 22(35):355707. PubMed ID: 21821872
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Colloidal Stability of Imogolite Nanotube Dispersions: A Phase Diagram Study.
    Paineau E; Monet G; Peyre V; Goldmann C; Rouzière S; Launois P
    Langmuir; 2019 Sep; 35(38):12451-12459. PubMed ID: 31475826
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Macroscopic fibers of well-aligned carbon nanotubes by wet spinning.
    Zhang S; Koziol KK; Kinloch IA; Windle AH
    Small; 2008 Aug; 4(8):1217-22. PubMed ID: 18666161
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hot-drawing of single and multiwall carbon nanotube fibers for high toughness and alignment.
    Miaudet P; Badaire S; Maugey M; Derré A; Pichot V; Launois P; Poulin P; Zakri C
    Nano Lett; 2005 Nov; 5(11):2212-5. PubMed ID: 16277455
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The alignment of carbon nanotubes: an effective route to extend their excellent properties to macroscopic scale.
    Sun X; Chen T; Yang Z; Peng H
    Acc Chem Res; 2013 Feb; 46(2):539-49. PubMed ID: 23170988
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Multiparameter structural optimization of single-walled carbon nanotube composites: toward record strength, stiffness, and toughness.
    Shim BS; Zhu J; Jan E; Critchley K; Ho S; Podsiadlo P; Sun K; Kotov NA
    ACS Nano; 2009 Jul; 3(7):1711-22. PubMed ID: 19591447
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Graphene in macroscopic order: liquid crystals and wet-spun fibers.
    Xu Z; Gao C
    Acc Chem Res; 2014 Apr; 47(4):1267-76. PubMed ID: 24555686
    [TBL] [Abstract][Full Text] [Related]  

  • 17. High-Performance Carbon Nanotube/Polymer Composite Fiber from Layer-by-Layer Deposition.
    Wu ML; Chen Y; Zhang L; Zhan H; Qiang L; Wang JN
    ACS Appl Mater Interfaces; 2016 Mar; 8(12):8137-44. PubMed ID: 26959406
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Enhancing the tensile properties of continuous millimeter-scale carbon nanotube fibers by densification.
    Hill FA; Havel TF; Hart AJ; Livermore C
    ACS Appl Mater Interfaces; 2013 Aug; 5(15):7198-207. PubMed ID: 23876225
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Surface functionalization of aluminosilicate nanotubes with organic molecules.
    Ma W; Yah WO; Otsuka H; Takahara A
    Beilstein J Nanotechnol; 2012; 3():82-100. PubMed ID: 22428100
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Tuning array morphology for high-strength carbon-nanotube fibers.
    Zheng L; Sun G; Zhan Z
    Small; 2010 Jan; 6(1):132-7. PubMed ID: 19902432
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.