BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

107 related articles for article (PubMed ID: 32255407)

  • 1. Improvement of Mineral Absorption and Nutritional Properties of
    Chawla P; Kumar V; Bains A; Singh R; Sadh PK; Kaushik R; Kumar N
    J Am Coll Nutr; 2020; 39(7):628-635. PubMed ID: 32255407
    [No Abstract]   [Full Text] [Related]  

  • 2. Mineral, Nutritional, and Phytochemical Composition and Baking Properties of Teff and Watermelon Seed Flours.
    Jaroszewska A; Jedrejek D; Sobolewska M; Kowalska I; Dzięcioł M
    Molecules; 2023 Apr; 28(7):. PubMed ID: 37050018
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Identification and characterization of metal-chelating bioenhancer peptide derived from fermented Citrullus lanatus seed milk.
    Ramesh L; B V Latha L; Kumar Mukunda C
    J Food Biochem; 2022 Jul; 46(7):e14102. PubMed ID: 35150146
    [TBL] [Abstract][Full Text] [Related]  

  • 4. In vitro assessment of bio-augmented minerals from peanut oil cakes fermented by
    Sadh PK; Chawla P; Bhandari L; Kaushik R; Duhan JS
    J Food Sci Technol; 2017 Oct; 54(11):3640-3649. PubMed ID: 29051659
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Evaluation of nutritional composition of Citrullus lanatus Linn. (watermelon) seed and biochemical assessment of the seed oil in rats.
    Eke R; Ejiofor E; Oyedemi S; Onoja S; Omeh N
    J Food Biochem; 2021 Jun; 45(6):e13763. PubMed ID: 34002399
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fermentation: An Unreliable Seed Treatment for Bacterial Fruit Blotch of Watermelon.
    Ge Y; Luo L; Xia L; Luo X; Bi H; Gong H; Tian Y; Walcott RR; Hu B
    Plant Dis; 2021 Apr; 105(4):1026-1033. PubMed ID: 33507094
    [No Abstract]   [Full Text] [Related]  

  • 7. Proteolysis in tempeh-type products obtained with Rhizopus and Aspergillus strains from grass pea (Lathyrus sativus) seeds.
    Starzyńska-Janiszewska A; Stodolak B; Wikiera A
    Acta Sci Pol Technol Aliment; 2015; 14(2):125-132. PubMed ID: 28068010
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Zinc and selenium accumulation and their effect on iron bioavailability in common bean seeds.
    de Figueiredo MA; Boldrin PF; Hart JJ; de Andrade MJB; Guilherme LRG; Glahn RP; Li L
    Plant Physiol Biochem; 2017 Feb; 111():193-202. PubMed ID: 27940270
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Increased iron bioavailability from lactic-fermented vegetables is likely an effect of promoting the formation of ferric iron (Fe(3+)).
    Scheers N; Rossander-Hulthen L; Torsdottir I; Sandberg AS
    Eur J Nutr; 2016 Feb; 55(1):373-82. PubMed ID: 25672527
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of controlled lactic acid fermentation on selected bioactive and nutritional parameters of tempeh obtained from unhulled common bean (Phaseolus vulgaris) seeds.
    Starzyńska-Janiszewska A; Stodolak B; Mickowska B
    J Sci Food Agric; 2014 Jan; 94(2):359-66. PubMed ID: 24037686
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Proximate composition and selected functional properties of fermented and unfermented African oil bean (Pentaclethra macrophylla) seed flour.
    Akubor PI; Chukwu JK
    Plant Foods Hum Nutr; 1999; 54(3):227-38. PubMed ID: 10716404
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparison between the nutritional quality of flour obtained from raw, roasted and fermented sesame (Sesamum indicum L.) seed grown in Nigeria.
    Makinde FM; Akinoso R
    Acta Sci Pol Technol Aliment; 2014; 13(3):309-19. PubMed ID: 24887946
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Lactic acid fermentation stimulated iron absorption by Caco-2 cells is associated with increased soluble iron content in carrot juice.
    Bergqvist SW; Andlid T; Sandberg AS
    Br J Nutr; 2006 Oct; 96(4):705-11. PubMed ID: 17010230
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cytotoxic and Apoptotic Induction Potential of Extracts from Fermented
    Ayo-Lawal RA; Osoniyi O; Sibuyi NRS; Meyer M; Ekpo O
    J Diet Suppl; 2021; 18(2):132-146. PubMed ID: 32114858
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The potential of fermentation on nutritional and technological improvement of cereal and legume flours: A review.
    Garrido-Galand S; Asensio-Grau A; Calvo-Lerma J; Heredia A; Andrés A
    Food Res Int; 2021 Jul; 145():110398. PubMed ID: 34112401
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Improvement of bioactive compounds content in granadilla (
    Santos TR; Feitosa PR; Gualberto NC; Narain N; Santana LC
    Food Sci Technol Int; 2021 Apr; 27(3):234-241. PubMed ID: 32772707
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Characterisation and functional properties of watermelon (Citrullus lanatus) seed proteins.
    Wani AA; Sogi DS; Singh P; Wani IA; Shivhare US
    J Sci Food Agric; 2011 Jan; 91(1):113-21. PubMed ID: 20824684
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fermentation of pseudocereals quinoa, canihua, and amaranth to improve mineral accessibility through degradation of phytate.
    Castro-Alba V; Lazarte CE; Perez-Rea D; Carlsson NG; Almgren A; Bergenståhl B; Granfeldt Y
    J Sci Food Agric; 2019 Aug; 99(11):5239-5248. PubMed ID: 31062366
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Endosperm-specific co-expression of recombinant soybean ferritin and Aspergillus phytase in maize results in significant increases in the levels of bioavailable iron.
    Drakakaki G; Marcel S; Glahn RP; Lund EK; Pariagh S; Fischer R; Christou P; Stoger E
    Plant Mol Biol; 2005 Dec; 59(6):869-80. PubMed ID: 16307363
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Solid-state fermentation of Jatropha seed cake for optimization of lipase, protease and detoxification of anti-nutrients in Jatropha seed cake using Aspergillus versicolor CJS-98.
    Veerabhadrappa MB; Shivakumar SB; Devappa S
    J Biosci Bioeng; 2014 Feb; 117(2):208-214. PubMed ID: 23958640
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.