BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

187 related articles for article (PubMed ID: 32255734)

  • 1. Flexoskeleton Printing Enables Versatile Fabrication of Hybrid Soft and Rigid Robots.
    Jiang M; Zhou Z; Gravish N
    Soft Robot; 2020 Dec; 7(6):770-778. PubMed ID: 32255734
    [TBL] [Abstract][Full Text] [Related]  

  • 2. SOFT ROBOTICS. A 3D-printed, functionally graded soft robot powered by combustion.
    Bartlett NW; Tolley MT; Overvelde JT; Weaver JC; Mosadegh B; Bertoldi K; Whitesides GM; Wood RJ
    Science; 2015 Jul; 349(6244):161-5. PubMed ID: 26160940
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Multi-Compliance Printing Techniques for the Fabrication of Customisable Hand Exoskeletons.
    Sarwar W; Harwin W; Janko B; Bell G
    IEEE Int Conf Rehabil Robot; 2019 Jun; 2019():488-493. PubMed ID: 31374677
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Bioinspired 3D Printable Soft Vacuum Actuators for Locomotion Robots, Grippers and Artificial Muscles.
    Tawk C; In Het Panhuis M; Spinks GM; Alici G
    Soft Robot; 2018 Dec; 5(6):685-694. PubMed ID: 30040042
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An integrated design and fabrication strategy for entirely soft, autonomous robots.
    Wehner M; Truby RL; Fitzgerald DJ; Mosadegh B; Whitesides GM; Lewis JA; Wood RJ
    Nature; 2016 Aug; 536(7617):451-5. PubMed ID: 27558065
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fabrication of Hard-Soft Microfluidic Devices Using Hybrid 3D Printing.
    Ruiz C; Kadimisetty K; Yin K; Mauk MG; Zhao H; Liu C
    Micromachines (Basel); 2020 Jun; 11(6):. PubMed ID: 32492980
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Crab-inspired compliant leg design method for adaptive locomotion of a multi-legged robot.
    Zhang J; Liu Q; Zhou J; Song A
    Bioinspir Biomim; 2022 Jan; 17(2):. PubMed ID: 34937001
    [No Abstract]   [Full Text] [Related]  

  • 8. A Fully Three-Dimensional Printed Inchworm-Inspired Soft Robot with Magnetic Actuation.
    Joyee EB; Pan Y
    Soft Robot; 2019 Jun; 6(3):333-345. PubMed ID: 30720388
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cruciate-Ligament-Inspired Compliant Joints: Application to 3D-Printed Continuum Surgical Robots.
    Sun Y; Lueth TC
    Annu Int Conf IEEE Eng Med Biol Soc; 2021 Nov; 2021():4645-4648. PubMed ID: 34892249
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Softworms: the design and control of non-pneumatic, 3D-printed, deformable robots.
    Umedachi T; Vikas V; Trimmer BA
    Bioinspir Biomim; 2016 Mar; 11(2):025001. PubMed ID: 26963596
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Additive Manufacturing for Soft Robotics: Design and Fabrication of Airtight, Monolithic Bending PneuNets with Embedded Air Connectors.
    Stano G; Arleo L; Percoco G
    Micromachines (Basel); 2020 May; 11(5):. PubMed ID: 32397442
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Facile Route for 3D Printing of Transparent PETg-Based Hybrid Biomicrofluidic Devices Promoting Cell Adhesion.
    Mehta V; Vilikkathala Sudhakaran S; Rath SN
    ACS Biomater Sci Eng; 2021 Aug; 7(8):3947-3963. PubMed ID: 34282888
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Multimaterial 3D Printing for Microrobotic Mechanisms.
    Soreni-Harari M; St Pierre R; McCue C; Moreno K; Bergbreiter S
    Soft Robot; 2020 Feb; 7(1):59-67. PubMed ID: 31460833
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Exoskeleton robots for lower limb assistance: A review of materials, actuation, and manufacturing methods.
    Hussain F; Goecke R; Mohammadian M
    Proc Inst Mech Eng H; 2021 Dec; 235(12):1375-1385. PubMed ID: 34254562
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A Biologically Inspired, Functionally Graded End Effector for Soft Robotics Applications.
    Kumar K; Liu J; Christianson C; Ali M; Tolley MT; Aizenberg J; Ingber DE; Weaver JC; Bertoldi K
    Soft Robot; 2017 Dec; 4(4):317-323. PubMed ID: 29251563
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Origami-inspired folding assembly of dielectric elastomers for programmable soft robots.
    Sun Y; Li D; Wu M; Yang Y; Su J; Wong T; Xu K; Li Y; Li L; Yu X; Yu J
    Microsyst Nanoeng; 2022; 8():37. PubMed ID: 35450326
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Tool changing 3D printer for rapid prototyping of advanced soft robotic elements.
    Conrad S; Speck T; Tauber FJ
    Bioinspir Biomim; 2021 Aug; 16(5):. PubMed ID: 34102629
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An Ultralightweight and Living Legged Robot.
    Vo Doan TT; Tan MYW; Bui XH; Sato H
    Soft Robot; 2018 Feb; 5(1):17-23. PubMed ID: 29412086
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Multicomponent and multifunctional integrated miniature soft robots.
    Xia N; Zhu G; Wang X; Dong Y; Zhang L
    Soft Matter; 2022 Oct; 18(39):7464-7485. PubMed ID: 36189642
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Bio-inspired control of joint torque and knee stiffness in a robotic lower limb exoskeleton using a central pattern generator.
    Schrade SO; Nager Y; Wu AR; Gassert R; Ijspeert A
    IEEE Int Conf Rehabil Robot; 2017 Jul; 2017():1387-1394. PubMed ID: 28814014
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.