These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

190 related articles for article (PubMed ID: 32255734)

  • 41. Bio-inspired upper limb soft exoskeleton to reduce stroke-induced complications.
    Li N; Yang T; Yu P; Chang J; Zhao L; Zhao X; Elhajj IH; Xi N; Liu L
    Bioinspir Biomim; 2018 Aug; 13(6):066001. PubMed ID: 30088477
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Reconfigurable Soft Robots by Building Blocks.
    Atia MGB; Mohammad A; Gameros A; Axinte D; Wright I
    Adv Sci (Weinh); 2022 Nov; 9(33):e2203217. PubMed ID: 36192162
    [TBL] [Abstract][Full Text] [Related]  

  • 43. 3D printing of versatile reactionware for chemical synthesis.
    Kitson PJ; Glatzel S; Chen W; Lin CG; Song YF; Cronin L
    Nat Protoc; 2016 May; 11(5):920-36. PubMed ID: 27077333
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Design Considerations for 3D Printed, Soft, Multimaterial Resistive Sensors for Soft Robotics.
    Shih B; Christianson C; Gillespie K; Lee S; Mayeda J; Huo Z; Tolley MT
    Front Robot AI; 2019; 6():30. PubMed ID: 33501046
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Printed miniature robotic actuators with curvature-induced stiffness control inspired by the insect wing.
    Wu R; Kwan KW; Wan Ngan AH
    Bioinspir Biomim; 2021 Jun; 16(4):. PubMed ID: 33975299
    [TBL] [Abstract][Full Text] [Related]  

  • 46. MotorSkins-a bio-inspired design approach towards an interactive soft-robotic exosuit.
    Gutierrez F; Razghandi K
    Bioinspir Biomim; 2021 Oct; 16(6):. PubMed ID: 34530414
    [TBL] [Abstract][Full Text] [Related]  

  • 47. One-Shot 3D-Printed Multimaterial Soft Robotic Jamming Grippers.
    Howard GD; Brett J; O'Connor J; Letchford J; Delaney GW
    Soft Robot; 2022 Jun; 9(3):497-508. PubMed ID: 34107745
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Fused Filament Fabrication 4D Printing of a Highly Extensible, Self-Healing, Shape Memory Elastomer Based on Thermoplastic Polymer Blends.
    Peng B; Yang Y; Ju T; Cavicchi KA
    ACS Appl Mater Interfaces; 2021 Mar; 13(11):12777-12788. PubMed ID: 33297679
    [TBL] [Abstract][Full Text] [Related]  

  • 49. 3D Printing Microactuators for Soft Microrobots.
    Tyagi M; Spinks GM; Jager EWH
    Soft Robot; 2021 Feb; 8(1):19-27. PubMed ID: 32326869
    [TBL] [Abstract][Full Text] [Related]  

  • 50. 4D Printing of Magnetoactive Soft Materials for On-Demand Magnetic Actuation Transformation.
    Zhang Y; Wang Q; Yi S; Lin Z; Wang C; Chen Z; Jiang L
    ACS Appl Mater Interfaces; 2021 Jan; 13(3):4174-4184. PubMed ID: 33398983
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Fabrication of a Soft Robotic Gripper With Integrated Strain Sensing Elements Using Multi-Material Additive Manufacturing.
    Georgopoulou A; Vanderborght B; Clemens F
    Front Robot AI; 2021; 8():615991. PubMed ID: 35372524
    [TBL] [Abstract][Full Text] [Related]  

  • 52. [Robot therapy with the H2 exoskeleton for gait rehabilitation in patients with incomplete spinal cord injry. A clinical experience].
    Gil-Agudo A; Del Ama-Espinosa AJ; Lozano-Berrio V; Fernández-López A; Megía García-Carpintero A; Benito-Penalva J; Pons JL
    Rehabilitacion (Madr); 2020; 54(2):87-95. PubMed ID: 32370833
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Three-dimensional (3D) synthetic printing for the manufacture of non-biodegradable models, tools and implants used in surgery: a review of current methods.
    Kirby B; Kenkel JM; Zhang AY; Amirlak B; Suszynski TM
    J Med Eng Technol; 2021 Jan; 45(1):14-21. PubMed ID: 33215944
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Towards Patient-Specific 3D-Printed Robotic Systems for Surgical Interventions.
    Desai JP; Sheng J; Cheng SS; Wang X; Deaton NJ; Rahman N
    IEEE Trans Med Robot Bionics; 2019 May; 1(2):77-87. PubMed ID: 32984777
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Recent progress in engineering functional biohybrid robots actuated by living cells.
    Gao L; Akhtar MU; Yang F; Ahmad S; He J; Lian Q; Cheng W; Zhang J; Li D
    Acta Biomater; 2021 Feb; 121():29-40. PubMed ID: 33285324
    [TBL] [Abstract][Full Text] [Related]  

  • 56. CT and MRI compatibility of flexible 3D-printed materials for soft actuators and robots used in image-guided interventions.
    Neumann W; Pusch TP; Siegfarth M; Schad LR; Stallkamp JL
    Med Phys; 2019 Dec; 46(12):5488-5498. PubMed ID: 31587313
    [TBL] [Abstract][Full Text] [Related]  

  • 57. 3D printing for soft robotics - a review.
    Gul JZ; Sajid M; Rehman MM; Siddiqui GU; Shah I; Kim KH; Lee JW; Choi KH
    Sci Technol Adv Mater; 2018; 19(1):243-262. PubMed ID: 29707065
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Electromagnetic Feet With Soft Toes for Adaptive, Versatile, and Stable Locomotion of an Inchworm-Inspired Pipe Crawling Robot.
    Khan MB; Chuthong T; Homchanthanakul J; Manoonpong P
    Front Bioeng Biotechnol; 2022; 10():842816. PubMed ID: 35252150
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Programming material compliance and actuation: hybrid additive fabrication of biocomposite structures for large-scale self-shaping.
    Cheng T; Wood D; Kiesewetter L; Özdemir E; Antorveza K; Menges A
    Bioinspir Biomim; 2021 Nov; 16(5):. PubMed ID: 34198272
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Soft robotics: a bioinspired evolution in robotics.
    Kim S; Laschi C; Trimmer B
    Trends Biotechnol; 2013 May; 31(5):287-94. PubMed ID: 23582470
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.