BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

263 related articles for article (PubMed ID: 32255845)

  • 1. A Review on Occurrence of Pesticides in Environment and Current Technologies for Their Remediation and Management.
    Rajmohan KS; Chandrasekaran R; Varjani S
    Indian J Microbiol; 2020 Jun; 60(2):125-138. PubMed ID: 32255845
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Sources, pathways, and relative risks of contaminants in surface water and groundwater: a perspective prepared for the Walkerton inquiry.
    Ritter L; Solomon K; Sibley P; Hall K; Keen P; Mattu G; Linton B
    J Toxicol Environ Health A; 2002 Jan; 65(1):1-142. PubMed ID: 11809004
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Trace elements in agroecosystems and impacts on the environment.
    He ZL; Yang XE; Stoffella PJ
    J Trace Elem Med Biol; 2005; 19(2-3):125-40. PubMed ID: 16325528
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Prospect of phytoremediation combined with other approaches for remediation of heavy metal-polluted soils.
    Liu S; Yang B; Liang Y; Xiao Y; Fang J
    Environ Sci Pollut Res Int; 2020 May; 27(14):16069-16085. PubMed ID: 32173779
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Bioremediation of Agricultural Soils Polluted with Pesticides: A Review.
    Raffa CM; Chiampo F
    Bioengineering (Basel); 2021 Jul; 8(7):. PubMed ID: 34356199
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Impact of biochar amendment in agricultural soils on the sorption, desorption, and degradation of pesticides: A review.
    Liu Y; Lonappan L; Brar SK; Yang S
    Sci Total Environ; 2018 Dec; 645():60-70. PubMed ID: 30015119
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Promises and potential of
    Khan AG
    Int J Phytoremediation; 2020; 22(9):900-915. PubMed ID: 32538143
    [TBL] [Abstract][Full Text] [Related]  

  • 8. In situ phytoremediation of heavy metal-contaminated soil and groundwater: a green inventive approach.
    Shikha D; Singh PK
    Environ Sci Pollut Res Int; 2021 Jan; 28(4):4104-4124. PubMed ID: 33210252
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Phytoremediation: Environmentally sustainable way for reclamation of heavy metal polluted soils.
    Ashraf S; Ali Q; Zahir ZA; Ashraf S; Asghar HN
    Ecotoxicol Environ Saf; 2019 Jun; 174():714-727. PubMed ID: 30878808
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Bioremediation of soils contaminated with polycyclic aromatic hydrocarbons, petroleum, pesticides, chlorophenols and heavy metals by composting: Applications, microbes and future research needs.
    Chen M; Xu P; Zeng G; Yang C; Huang D; Zhang J
    Biotechnol Adv; 2015 Nov; 33(6 Pt 1):745-55. PubMed ID: 26008965
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Microbial and Plant-Assisted Bioremediation of Heavy Metal Polluted Environments: A Review.
    Ojuederie OB; Babalola OO
    Int J Environ Res Public Health; 2017 Dec; 14(12):. PubMed ID: 29207531
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Bioconcentration, bioaccumulation, and metabolism of pesticides in aquatic organisms.
    Katagi T
    Rev Environ Contam Toxicol; 2010; 204():1-132. PubMed ID: 19957234
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Utilising the synergy between plants and rhizosphere microorganisms to enhance breakdown of organic pollutants in the environment.
    Chaudhry Q; Blom-Zandstra M; Gupta S; Joner EJ
    Environ Sci Pollut Res Int; 2005; 12(1):34-48. PubMed ID: 15768739
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Electrokinetic-enhanced phytoremediation of soils: status and opportunities.
    Cameselle C; Chirakkara RA; Reddy KR
    Chemosphere; 2013 Oct; 93(4):626-36. PubMed ID: 23835413
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The toxicology of climate change: environmental contaminants in a warming world.
    Noyes PD; McElwee MK; Miller HD; Clark BW; Van Tiem LA; Walcott KC; Erwin KN; Levin ED
    Environ Int; 2009 Aug; 35(6):971-86. PubMed ID: 19375165
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Phytoremediation of organochlorine pesticides: Concept, method, and recent developments.
    Singh T; Singh DK
    Int J Phytoremediation; 2017 Sep; 19(9):834-843. PubMed ID: 28699783
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Climate change driven plant-metal-microbe interactions.
    Rajkumar M; Prasad MN; Swaminathan S; Freitas H
    Environ Int; 2013 Mar; 53():74-86. PubMed ID: 23347948
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Physiochemical assessment of environmental behaviors of herbicide atrazine in soils associated with its degradation and bioavailability to weeds.
    Liu J; Zhou JH; Guo QN; Ma LY; Yang H
    Chemosphere; 2021 Jan; 262():127830. PubMed ID: 32763580
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A critical review of the bioavailability and impacts of heavy metals in municipal solid waste composts compared to sewage sludge.
    Smith SR
    Environ Int; 2009 Jan; 35(1):142-56. PubMed ID: 18691760
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Bioavailability of xenobiotics in the soil environment.
    Katayama A; Bhula R; Burns GR; Carazo E; Felsot A; Hamilton D; Harris C; Kim YH; Kleter G; Koedel W; Linders J; Peijnenburg JG; Sabljic A; Stephenson RG; Racke DK; Rubin B; Tanaka K; Unsworth J; Wauchope RD
    Rev Environ Contam Toxicol; 2010; 203():1-86. PubMed ID: 19957116
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.