These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

169 related articles for article (PubMed ID: 32255890)

  • 1. Perturbation bounds for Monte Carlo within Metropolis via restricted approximations.
    Medina-Aguayo F; Rudolf D; Schweizer N
    Stoch Process Their Appl; 2020 Apr; 130(4):2200-2227. PubMed ID: 32255890
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Stability of noisy Metropolis-Hastings.
    Medina-Aguayo FJ; Lee A; Roberts GO
    Stat Comput; 2016; 26(6):1187-1211. PubMed ID: 32055107
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A Monte Carlo Metropolis-Hastings algorithm for sampling from distributions with intractable normalizing constants.
    Liang F; Jin IH
    Neural Comput; 2013 Aug; 25(8):2199-234. PubMed ID: 23607562
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Convergence Rates for the Constrained Sampling via Langevin Monte Carlo.
    Zhu Y
    Entropy (Basel); 2023 Aug; 25(8):. PubMed ID: 37628264
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Metropolis sampling in pedigree analysis.
    Sobel E; Lange K
    Stat Methods Med Res; 1993; 2(3):263-82. PubMed ID: 8261261
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A general construction for parallelizing Metropolis-Hastings algorithms.
    Calderhead B
    Proc Natl Acad Sci U S A; 2014 Dec; 111(49):17408-13. PubMed ID: 25422442
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Markov Chain Monte Carlo Inference of Parametric Dictionaries for Sparse Bayesian Approximations.
    Chaspari T; Tsiartas A; Tsilifis P; Narayanan S
    IEEE Trans Signal Process; 2016 Jun; 64(12):3077-3092. PubMed ID: 28649173
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An algorithm for Monte Carlo estimation of genotype probabilities on complex pedigrees.
    Lin S; Thompson E; Wijsman E
    Ann Hum Genet; 1994 Oct; 58(4):343-57. PubMed ID: 7864590
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A quasi-Monte Carlo Metropolis algorithm.
    Owen AB; Tribble SD
    Proc Natl Acad Sci U S A; 2005 Jun; 102(25):8844-9. PubMed ID: 15956207
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Quantifying the uncertainty in model parameters using Gaussian process-based Markov chain Monte Carlo in cardiac electrophysiology.
    Dhamala J; Arevalo HJ; Sapp J; Horácek BM; Wu KC; Trayanova NA; Wang L
    Med Image Anal; 2018 Aug; 48():43-57. PubMed ID: 29843078
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Bayesian phylogeny analysis via stochastic approximation Monte Carlo.
    Cheon S; Liang F
    Mol Phylogenet Evol; 2009 Nov; 53(2):394-403. PubMed ID: 19589389
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Bayesian Computational Methods for Sampling from the Posterior Distribution of a Bivariate Survival Model, Based on AMH Copula in the Presence of Right-Censored Data.
    Saraiva EF; Suzuki AK; Milan LA
    Entropy (Basel); 2018 Aug; 20(9):. PubMed ID: 33265731
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Two-Stage Metropolis-Hastings for Tall Data.
    Payne RD; Mallick BK
    J Classif; 2018 Apr; 35(1):29-51. PubMed ID: 30287977
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Applying diffusion-based Markov chain Monte Carlo.
    Herbei R; Paul R; Berliner LM
    PLoS One; 2017; 12(3):e0173453. PubMed ID: 28301529
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Variational method for estimating the rate of convergence of Markov-chain Monte Carlo algorithms.
    Casey FP; Waterfall JJ; Gutenkunst RN; Myers CR; Sethna JP
    Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Oct; 78(4 Pt 2):046704. PubMed ID: 18999558
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A Bootstrap Metropolis-Hastings Algorithm for Bayesian Analysis of Big Data.
    Liang F; Kim J; Song Q
    Technometrics; 2016; 58(3):604-318. PubMed ID: 29033469
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Estimating the granularity coefficient of a Potts-Markov random field within a Markov chain Monte Carlo algorithm.
    Pereyra M; Dobigeon N; Batatia H; Tourneret JY
    IEEE Trans Image Process; 2013 Jun; 22(6):2385-97. PubMed ID: 23475357
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A Novel Hybrid Monte Carlo Algorithm for Sampling Path Space.
    Pinski FJ
    Entropy (Basel); 2021 Apr; 23(5):. PubMed ID: 33922040
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Searching for convergence in phylogenetic Markov chain Monte Carlo.
    Beiko RG; Keith JM; Harlow TJ; Ragan MA
    Syst Biol; 2006 Aug; 55(4):553-65. PubMed ID: 16857650
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The Behavior of Metropolis-Coupled Markov Chains When Sampling Rugged Phylogenetic Distributions.
    Brown JM; Thomson RC
    Syst Biol; 2018 Jul; 67(4):729-734. PubMed ID: 29462409
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.