BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

294 related articles for article (PubMed ID: 32256050)

  • 1. Paeoniflorin Ameliorates Chronic Hypoxia/SU5416-Induced Pulmonary Arterial Hypertension by Inhibiting Endothelial-to-Mesenchymal Transition.
    Yu M; Peng L; Liu P; Yang M; Zhou H; Ding Y; Wang J; Huang W; Tan Q; Wang Y; Xie W; Kong H; Wang H
    Drug Des Devel Ther; 2020; 14():1191-1202. PubMed ID: 32256050
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Paeoniflorin attenuates monocrotaline-induced pulmonary arterial hypertension in rats by suppressing TAK1-MAPK/NF-κB pathways.
    Yu M; Wu X; Wang J; He M; Han H; Hu S; Xu J; Yang M; Tan Q; Wang Y; Wang H; Xie W; Kong H
    Int J Med Sci; 2022; 19(4):681-694. PubMed ID: 35582418
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fasudil Dichloroacetate Alleviates SU5416/Hypoxia-Induced Pulmonary Arterial Hypertension by Ameliorating Dysfunction of Pulmonary Arterial Smooth Muscle Cells.
    Liu P; Huang W; Ding Y; Wu J; Liang Z; Huang Z; Xie W; Kong H
    Drug Des Devel Ther; 2021; 15():1653-1666. PubMed ID: 33935492
    [TBL] [Abstract][Full Text] [Related]  

  • 4. miR-181b-5p inhibits endothelial-mesenchymal transition in monocrotaline-induced pulmonary arterial hypertension by targeting endocan and TGFBR1.
    Zhao H; Wang Y; Zhang X; Guo Y; Wang X
    Toxicol Appl Pharmacol; 2020 Jan; 386():114827. PubMed ID: 31734320
    [TBL] [Abstract][Full Text] [Related]  

  • 5. MnTBAP Reverses Pulmonary Vascular Remodeling and Improves Cardiac Function in Experimentally Induced Pulmonary Arterial Hypertension.
    Gomez-Puerto MC; Sun XQ; Schalij I; Orriols M; Pan X; Szulcek R; Goumans MJ; Bogaard HJ; Zhou Q; Ten Dijke P
    Int J Mol Sci; 2020 Jun; 21(11):. PubMed ID: 32531895
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The selective PGI2 receptor agonist selexipag ameliorates Sugen 5416/hypoxia-induced pulmonary arterial hypertension in rats.
    Honda Y; Kosugi K; Fuchikami C; Kuramoto K; Numakura Y; Kuwano K
    PLoS One; 2020; 15(10):e0240692. PubMed ID: 33057388
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Regulation of mitochondrial fragmentation in microvascular endothelial cells isolated from the SU5416/hypoxia model of pulmonary arterial hypertension.
    Suresh K; Servinsky L; Jiang H; Bigham Z; Zaldumbide J; Huetsch JC; Kliment C; Acoba MG; Kirsch BJ; Claypool SM; Le A; Damarla M; Shimoda LA
    Am J Physiol Lung Cell Mol Physiol; 2019 Nov; 317(5):L639-L652. PubMed ID: 31461316
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nintedanib improves cardiac fibrosis but leaves pulmonary vascular remodelling unaltered in experimental pulmonary hypertension.
    Rol N; de Raaf MA; Sun XQ; Kuiper VP; da Silva Gonçalves Bos D; Happé C; Kurakula K; Dickhoff C; Thuillet R; Tu L; Guignabert C; Schalij I; Lodder K; Pan X; Herrmann FE; van Nieuw Amerongen GP; Koolwijk P; Vonk-Noordegraaf A; de Man FS; Wollin L; Goumans MJ; Szulcek R; Bogaard HJ
    Cardiovasc Res; 2019 Feb; 115(2):432-439. PubMed ID: 30032282
    [TBL] [Abstract][Full Text] [Related]  

  • 9. miR-27a promotes endothelial-mesenchymal transition in hypoxia-induced pulmonary arterial hypertension by suppressing BMP signaling.
    Liu T; Zou XZ; Huang N; Ge XY; Yao MZ; Liu H; Zhang Z; Hu CP
    Life Sci; 2019 Jun; 227():64-73. PubMed ID: 31004656
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Increased MAO-A Activity Promotes Progression of Pulmonary Arterial Hypertension.
    Sun XQ; Peters EL; Schalij I; Axelsen JB; Andersen S; Kurakula K; Gomez-Puerto MC; Szulcek R; Pan X; da Silva Goncalves Bos D; Schiepers REJ; Andersen A; Goumans MJ; Vonk Noordegraaf A; van der Laarse WJ; de Man FS; Bogaard HJ
    Am J Respir Cell Mol Biol; 2021 Mar; 64(3):331-343. PubMed ID: 33264068
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mineralocorticoid receptor antagonist treatment of established pulmonary arterial hypertension improves interventricular dependence in the SU5416-hypoxia rat model.
    Lu M; Chen LY; Gairhe S; Mazer AJ; Anderson SA; Nelson JNH; Noguchi A; Siddique MAH; Dougherty EJ; Zou Y; Johnston KA; Yu ZX; Wang H; Wang S; Sun J; Solomon SB; Vanderpool RR; Solomon MA; Danner RL; Elinoff JM
    Am J Physiol Lung Cell Mol Physiol; 2022 Mar; 322(3):L315-L332. PubMed ID: 35043674
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Rivaroxaban Attenuates Right Ventricular Remodeling in Rats with Pulmonary Arterial Hypertension.
    Imano H; Kato R; Nomura A; Tamura M; Yamaguchi Y; Ijiri Y; Wu H; Nakano T; Okada Y; Yamaguchi T; Izumi Y; Yoshiyama M; Asahi M; Hayashi T
    Biol Pharm Bull; 2021 May; 44(5):669-677. PubMed ID: 33612567
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Transcriptomic Analysis of Right Ventricular Remodeling in Two Rat Models of Pulmonary Hypertension: Identification and Validation of Epithelial-to-Mesenchymal Transition in Human Right Ventricular Failure.
    Park JF; Clark VR; Banerjee S; Hong J; Razee A; Williams T; Fishbein G; Saddic L; Umar S
    Circ Heart Fail; 2021 Feb; 14(2):e007058. PubMed ID: 33541093
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Therapeutic Benefit of the Association of Lodenafil with Mesenchymal Stem Cells on Hypoxia-induced Pulmonary Hypertension in Rats.
    Silva MMCD; Alencar AKN; Silva JSD; Montagnoli TL; Silva GFD; Rocha BS; Montes GC; Mendez-Otero R; Pimentel-Coelho PM; Vasques JF; Trahez MM; Sudo RT; Zapata-Sudo G
    Cells; 2020 Sep; 9(9):. PubMed ID: 32961896
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Penetrance of Severe Pulmonary Arterial Hypertension in Response to Vascular Endothelial Growth Factor Receptor 2 Blockade in a Genetically Prone Rat Model Is Reduced by Female Sex.
    Chaudhary KR; Deng Y; Yang A; Cober ND; Stewart DJ
    J Am Heart Assoc; 2021 Aug; 10(15):e019488. PubMed ID: 34315227
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Efficacy of the thromboxane receptor antagonist NTP42 alone, or in combination with sildenafil, in the sugen/hypoxia-induced model of pulmonary arterial hypertension.
    Mulvaney EP; Reid HM; Bialesova L; Mendes-Ferreira P; Adão R; Brás-Silva C; Kinsella BT
    Eur J Pharmacol; 2020 Dec; 889():173658. PubMed ID: 33121950
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Loss of lung microvascular endothelial Piezo2 expression impairs NO synthesis, induces EndMT, and is associated with pulmonary hypertension.
    Tian S; Cai Z; Sen P; van Uden D; van de Kamp E; Thuillet R; Tu L; Guignabert C; Boomars K; Van der Heiden K; Brandt MM; Merkus D
    Am J Physiol Heart Circ Physiol; 2022 Nov; 323(5):H958-H974. PubMed ID: 36149769
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Reactive oxygen species induced Ca
    Suresh K; Servinsky L; Jiang H; Bigham Z; Yun X; Kliment C; Huetsch J; Damarla M; Shimoda LA
    Am J Physiol Lung Cell Mol Physiol; 2018 May; 314(5):L893-L907. PubMed ID: 29388466
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The Isoquinoline-Sulfonamide Compound H-1337 Attenuates SU5416/Hypoxia-Induced Pulmonary Arterial Hypertension in Rats.
    Shoji H; Yoshida Y; Sanada TJ; Naito A; Maruyama J; Zhang E; Sumi K; Sakao S; Maruyama K; Hidaka H; Tatsumi K
    Cells; 2021 Dec; 11(1):. PubMed ID: 35011628
    [TBL] [Abstract][Full Text] [Related]  

  • 20. RV-specific Targeting of Snai1 Rescues Pulmonary Hypertension-induced Right Ventricular Failure by Inhibiting EndMT and Fibrosis
    Banerjee S; Onwunyi VRC; Hong J; Martineau S; Fishbein GA; Bonnet SB; Provencher S; Bonnet S; Umar S
    bioRxiv; 2024 May; ():. PubMed ID: 38746200
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.