These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

172 related articles for article (PubMed ID: 32256679)

  • 1. A convenient, rapid and efficient method for establishing transgenic lines of
    Zhang K; He J; Liu L; Xie R; Qiu L; Li X; Yuan W; Chen K; Yin Y; Kyaw MMM; San AA; Li S; Tang X; Fu C; Li M
    Plant Methods; 2020; 16():43. PubMed ID: 32256679
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Improved Agrobacterium-mediated transformation and high efficiency of root formation from hypocotyl meristem of spring Brassica napus 'Precocity' cultivar.
    Liu XX; Lang SR; Su LQ; Liu X; Wang XF
    Genet Mol Res; 2015 Dec; 14(4):16840-55. PubMed ID: 26681030
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Agrobacterium-mediated transformation of Brassica napus and Brassica oleracea.
    Bhalla PL; Singh MB
    Nat Protoc; 2008; 3(2):181-9. PubMed ID: 18274519
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Sef1, rapid-cycling Brassica napus for large-scale functional genome research in a controlled environment.
    Xie X; Jiang Y; Xu W; Yang W; Lei W; Qian D; Gao J; Cai F; Yu D; Ke L; Fan Z
    Theor Appl Genet; 2023 Jun; 136(7):163. PubMed ID: 37368122
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparison of three
    Liu F; Wang P; Xiong X; Fu P; Gao H; Ding X; Wu G
    Plant Methods; 2020; 16():81. PubMed ID: 32518583
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Overexpressing Arabidopsis thaliana ACBP6 in transgenic rapid-cycling Brassica napus confers cold tolerance.
    Alahakoon AY; Tongson E; Meng W; Ye ZW; Russell DA; Chye ML; Golz JF; Taylor PWJ
    Plant Methods; 2022 May; 18(1):62. PubMed ID: 35546678
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Optimization of Brassica napus (canola) explant regeneration for genetic transformation.
    Maheshwari P; Selvaraj G; Kovalchuk I
    N Biotechnol; 2011 Dec; 29(1):144-55. PubMed ID: 21722759
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of Overexpression of
    Guo Y; Li D; Liu T; Liao M; Li Y; Zhang W; Liu Z; Chen M
    Int J Mol Sci; 2022 Dec; 23(24):. PubMed ID: 36555573
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Erratum: High-Throughput Identification of Resistance to Pseudomonas syringae pv. Tomato in Tomato using Seedling Flood Assay.
    J Vis Exp; 2023 Oct; (200):. PubMed ID: 37851522
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The high-affinity transporter BnPHT1;4 is involved in phosphorus acquisition and mobilization for facilitating seed germination and early seedling growth of Brassica napus.
    Huang KL; Wang H; Wei YL; Jia HX; Zha L; Zheng Y; Ren F; Li XB
    BMC Plant Biol; 2019 Apr; 19(1):156. PubMed ID: 31023216
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Genetic load and transgenic mitigating genes in transgenic Brassica rapa (field mustard) x Brassica napus (oilseed rape) hybrid populations.
    Rose CW; Millwood RJ; Moon HS; Rao MR; Halfhill MD; Raymer PL; Warwick SI; Al-Ahmad H; Gressel J; Stewart CN
    BMC Biotechnol; 2009 Oct; 9():93. PubMed ID: 19878583
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Transformation of Brassica napus and Brassica oleracea Using Agrobacterium tumefaciens and the Expression of the bar and neo Genes in the Transgenic Plants.
    De Block M; De Brouwer D; Tenning P
    Plant Physiol; 1989 Oct; 91(2):694-701. PubMed ID: 16667089
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Chloroplast transformation of rapeseed (Brassica napus) by particle bombardment of cotyledons.
    Cheng L; Li HP; Qu B; Huang T; Tu JX; Fu TD; Liao YC
    Plant Cell Rep; 2010 Apr; 29(4):371-81. PubMed ID: 20179937
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of integrated bombardment and Agrobacterium transformation system on transient GUS expression in hypocotyls of rapeseed (Brassica napus L. cv. PF704) microspore-derived embryos.
    Abdollahi MR; Moieni A; Mousavi A; Salmanian AH; Jalali Javaran M; Majdi M
    Pak J Biol Sci; 2007 Sep; 10(18):3141-5. PubMed ID: 19090113
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The Highly Embryogenic
    Calabuig-Serna A; Mir R; Porcel R; Seguí-Simarro JM
    Plants (Basel); 2023 May; 12(10):. PubMed ID: 37653925
    [No Abstract]   [Full Text] [Related]  

  • 16. Increased Agrobacterium-mediated transformation and rooting efficiencies in canola (Brassica napus L.) from hypocotyl segment explants.
    Cardoza V; Stewart CN
    Plant Cell Rep; 2003 Feb; 21(6):599-604. PubMed ID: 12789436
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Development of efficient plant regeneration and transformation system for impatiens using Agrobacterium tumefaciens and multiple bud cultures as explants.
    Dan Y; Baxter A; Zhang S; Pantazis CJ; Veilleux RE
    BMC Plant Biol; 2010 Aug; 10():165. PubMed ID: 20696066
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Production of transgenic rape plants (Brassica napus L.) using Agrobacterium tumefaciens].
    Radchuk VV; Klocke E; Radchuk RI; Neumann M; Blume YaB
    Genetika; 2000 Jul; 36(7):932-41. PubMed ID: 10994497
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mitigation of the salinity stress in rapeseed (Brassica napus L.) productivity by exogenous applications of bio-selenium nanoparticles during the early seedling stage.
    El-Badri AM; Batool M; Mohamed IAA; Wang Z; Wang C; Tabl KM; Khatab A; Kuai J; Wang J; Wang B; Zhou G
    Environ Pollut; 2022 Oct; 310():119815. PubMed ID: 35926737
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Long-chain acyl-CoA synthetase 2 is involved in seed oil production in Brassica napus.
    Ding LN; Gu SL; Zhu FG; Ma ZY; Li J; Li M; Wang Z; Tan XL
    BMC Plant Biol; 2020 Jan; 20(1):21. PubMed ID: 31931712
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.