These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 32257179)

  • 1. Ultra-long-working-distance spectroscopy of single nanostructures with aspherical solid immersion microlenses.
    Bogucki A; Zinkiewicz Ł; Grzeszczyk M; Pacuski W; Nogajewski K; Kazimierczuk T; Rodek A; Suffczyński J; Watanabe K; Taniguchi T; Wasylczyk P; Potemski M; Kossacki P
    Light Sci Appl; 2020; 9():48. PubMed ID: 32257179
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Quantum emitters and detectors based on 2D van der Waals materials.
    Ghosh Dastidar M; Thekkooden I; Nayak PK; Praveen Bhallamudi V
    Nanoscale; 2022 Apr; 14(14):5289-5313. PubMed ID: 35322836
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Reflection aspherical microlenses for planar optics fabricated by electron-beam lithography.
    Shiono T; Ogawa H
    Opt Lett; 1992 Apr; 17(8):565-7. PubMed ID: 19794559
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Beaming light from a quantum emitter with a planar optical antenna.
    Checcucci S; Lombardi P; Rizvi S; Sgrignuoli F; Gruhler N; Dieleman FB; S Cataliotti F; Pernice WH; Agio M; Toninelli C
    Light Sci Appl; 2017 Apr; 6(4):e16245. PubMed ID: 30167241
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Hybrid achromatic microlenses with high numerical apertures and focusing efficiencies across the visible.
    Richards CA; Ocier CR; Xie D; Gao H; Robertson T; Goddard LL; Christiansen RE; Cahill DG; Braun PV
    Nat Commun; 2023 May; 14(1):3119. PubMed ID: 37253761
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Tolerancing the surface form of aspheric microlenses manufactured by wafer-level optics techniques.
    Béguelin J; Noell W; Scharf T; Voelkel R
    Appl Opt; 2020 May; 59(13):3910-3919. PubMed ID: 32400660
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Generation of a high-resolution 3D-printed freeform collimator for VCSEL-based 3D-depth sensing.
    Chen B; Claus D; Russ D; Nizami MR
    Opt Lett; 2020 Oct; 45(19):5583-5586. PubMed ID: 33001952
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Excitonic Beam Steering in an Active van der Waals Metasurface.
    Li M; Hail CU; Biswas S; Atwater HA
    Nano Lett; 2023 Apr; 23(7):2771-2777. PubMed ID: 36921321
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Solid-State Thin-Film Broadband Short-Wave Infrared Light Emitters.
    Pradhan S; Dalmases M; Konstantatos G
    Adv Mater; 2020 Nov; 32(45):e2003830. PubMed ID: 32996211
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ultrafast charge transfer in atomically thin MoS₂/WS₂ heterostructures.
    Hong X; Kim J; Shi SF; Zhang Y; Jin C; Sun Y; Tongay S; Wu J; Zhang Y; Wang F
    Nat Nanotechnol; 2014 Sep; 9(9):682-6. PubMed ID: 25150718
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Atomic-Void van der Waals Channel Waveguides.
    Ling H; Khurgin JB; Davoyan AR
    Nano Lett; 2022 Aug; 22(15):6254-6261. PubMed ID: 35867898
    [TBL] [Abstract][Full Text] [Related]  

  • 12. 2D Material Optoelectronics for Information Functional Device Applications: Status and Challenges.
    Tan T; Jiang X; Wang C; Yao B; Zhang H
    Adv Sci (Weinh); 2020 Jun; 7(11):2000058. PubMed ID: 32537415
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Two-Dimensional Semiconductor Optoelectronics Based on van der Waals Heterostructures.
    Lee JY; Shin JH; Lee GH; Lee CH
    Nanomaterials (Basel); 2016 Oct; 6(11):. PubMed ID: 28335321
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Correlated fluorescence blinking in two-dimensional semiconductor heterostructures.
    Xu W; Liu W; Schmidt JF; Zhao W; Lu X; Raab T; Diederichs C; Gao W; Seletskiy DV; Xiong Q
    Nature; 2017 Jan; 541(7635):62-67. PubMed ID: 27974803
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Electronic structures and enhanced optical properties of blue phosphorene/transition metal dichalcogenides van der Waals heterostructures.
    Peng Q; Wang Z; Sa B; Wu B; Sun Z
    Sci Rep; 2016 Aug; 6():31994. PubMed ID: 27553787
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Low-Divergence hBN Single-Photon Source with a 3D-Printed Low-Fluorescence Elliptical Polymer Microlens.
    Preuß JA; Gehring H; Schmidt R; Jin L; Wendland D; Kern J; Pernice WHP; de Vasconcellos SM; Bratschitsch R
    Nano Lett; 2023 Jan; 23(2):407-413. PubMed ID: 36445803
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Black phosphorene/monolayer transition-metal dichalcogenides as two dimensional van der Waals heterostructures: a first-principles study.
    You B; Wang X; Zheng Z; Mi W
    Phys Chem Chem Phys; 2016 Mar; 18(10):7381-8. PubMed ID: 26899350
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Interlayer valley excitons in heterobilayers of transition metal dichalcogenides.
    Rivera P; Yu H; Seyler KL; Wilson NP; Yao W; Xu X
    Nat Nanotechnol; 2018 Nov; 13(11):1004-1015. PubMed ID: 30104622
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Near-Unity Absorption in van der Waals Semiconductors for Ultrathin Optoelectronics.
    Jariwala D; Davoyan AR; Tagliabue G; Sherrott MC; Wong J; Atwater HA
    Nano Lett; 2016 Sep; 16(9):5482-7. PubMed ID: 27563733
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Planning Implications Related to Sterilization-Sensitive Science Investigations Associated with Mars Sample Return (MSR).
    Velbel MA; Cockell CS; Glavin DP; Marty B; Regberg AB; Smith AL; Tosca NJ; Wadhwa M; Kminek G; Meyer MA; Beaty DW; Carrier BL; Haltigin T; Hays LE; Agee CB; Busemann H; Cavalazzi B; Debaille V; Grady MM; Hauber E; Hutzler A; McCubbin FM; Pratt LM; Smith CL; Summons RE; Swindle TD; Tait KT; Udry A; Usui T; Westall F; Zorzano MP
    Astrobiology; 2022 Jun; 22(S1):S112-S164. PubMed ID: 34904892
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.