These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 32257321)

  • 1. Quantum chemical molecular dynamics and metadynamics simulation of aluminium binding to amyloid-β and related peptides.
    Platts JA
    R Soc Open Sci; 2020 Feb; 7(2):191562. PubMed ID: 32257321
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Theoretical study of copper binding to GHK peptide.
    Alshammari N; Platts JA
    Comput Biol Chem; 2020 Jun; 86():107265. PubMed ID: 32371360
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Molecular dynamics simulation of aluminium binding to amyloid-β and its effect on peptide structure.
    Turner M; Mutter ST; Kennedy-Britten OD; Platts JA
    PLoS One; 2019; 14(6):e0217992. PubMed ID: 31185053
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Exploration of Chemical Compound, Conformer, and Reaction Space with Meta-Dynamics Simulations Based on Tight-Binding Quantum Chemical Calculations.
    Grimme S
    J Chem Theory Comput; 2019 May; 15(5):2847-2862. PubMed ID: 30943025
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Modeling of Platinum-Aryl Interaction with Amyloid-β Peptide.
    Turner M; Platts JA; Deeth RJ
    J Chem Theory Comput; 2016 Mar; 12(3):1385-92. PubMed ID: 26756469
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Benchmarking of copper(II) LFMM parameters for studying amyloid-β peptides.
    Mutter ST; Deeth RJ; Turner M; Platts JA
    J Biomol Struct Dyn; 2018 Apr; 36(5):1145-1153. PubMed ID: 28362147
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Hierarchical parallelization of divide-and-conquer density functional tight-binding molecular dynamics and metadynamics simulations.
    Nishimura Y; Nakai H
    J Comput Chem; 2020 Jul; 41(19):1759-1772. PubMed ID: 32358918
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Geometrical benchmarking and analysis of redox potentials of copper(I/II) guanidine-quinoline complexes: Comparison of semi-empirical tight-binding and DFT methods and the challenge of describing the entatic state (part III).
    Raßpe-Lange L; Hoffmann A; Gertig C; Heck J; Leonhard K; Herres-Pawlis S
    J Comput Chem; 2023 Jan; 44(3):319-328. PubMed ID: 35640228
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Does aluminium bind to histidine? An NMR investigation of amyloid β12 and amyloid β16 fragments.
    Narayan P; Krishnarjuna B; Vishwanathan V; Jagadeesh Kumar D; Babu S; Ramanathan KV; Easwaran KR; Nagendra HG; Raghothama S
    Chem Biol Drug Des; 2013 Jul; 82(1):48-59. PubMed ID: 23464626
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Metadynamics combined with auxiliary density functional and density functional tight-binding methods: alanine dipeptide as a case study.
    Cuny J; Korchagina K; Menakbi C; Mineva T
    J Mol Model; 2017 Mar; 23(3):72. PubMed ID: 28204939
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fe(2+) binding on amyloid β-peptide promotes aggregation.
    Boopathi S; Kolandaivel P
    Proteins; 2016 Sep; 84(9):1257-74. PubMed ID: 27214008
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Transition Metal Ion Interactions with Disordered Amyloid-β Peptides in the Pathogenesis of Alzheimer's Disease: Insights from Computational Chemistry Studies.
    Strodel B; Coskuner-Weber O
    J Chem Inf Model; 2019 May; 59(5):1782-1805. PubMed ID: 30933519
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Essential slow degrees of freedom in protein-surface simulations: A metadynamics investigation.
    Prakash A; Sprenger KG; Pfaendtner J
    Biochem Biophys Res Commun; 2018 Mar; 498(2):274-281. PubMed ID: 28720500
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Experimental verification of force fields for molecular dynamics simulations using Gly-Pro-Gly-Gly.
    Aliev AE; Courtier-Murias D
    J Phys Chem B; 2010 Sep; 114(38):12358-75. PubMed ID: 20825228
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Coupled-perturbed DFTB-QM/MM metadynamics: Application to proton-coupled electron transfer.
    Gillet N; Elstner M; Kubař T
    J Chem Phys; 2018 Aug; 149(7):072328. PubMed ID: 30134697
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Accurate and rapid prediction of p
    Sinha V; Laan JJ; Pidko EA
    Phys Chem Chem Phys; 2021 Feb; 23(4):2557-2567. PubMed ID: 33325474
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Silicon Liquid Structure and Crystal Nucleation from Ab Initio Deep Metadynamics.
    Bonati L; Parrinello M
    Phys Rev Lett; 2018 Dec; 121(26):265701. PubMed ID: 30636123
    [TBL] [Abstract][Full Text] [Related]  

  • 18. GFN2-xTB-An Accurate and Broadly Parametrized Self-Consistent Tight-Binding Quantum Chemical Method with Multipole Electrostatics and Density-Dependent Dispersion Contributions.
    Bannwarth C; Ehlert S; Grimme S
    J Chem Theory Comput; 2019 Mar; 15(3):1652-1671. PubMed ID: 30741547
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Transition-Tempered Metadynamics Is a Promising Tool for Studying the Permeation of Drug-like Molecules through Membranes.
    Sun R; Dama JF; Tan JS; Rose JP; Voth GA
    J Chem Theory Comput; 2016 Oct; 12(10):5157-5169. PubMed ID: 27598403
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ligand field molecular dynamics simulation of Pt(II)-phenanthroline binding to N-terminal fragment of amyloid-β peptide.
    Turner M; Mutter ST; Deeth RJ; Platts JA
    PLoS One; 2018; 13(3):e0193668. PubMed ID: 29509784
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.