BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

188 related articles for article (PubMed ID: 32257353)

  • 1. Migrating birds rapidly increase constitutive immune function during stopover.
    Eikenaar C; Hessler S; Hegemann A
    R Soc Open Sci; 2020 Feb; 7(2):192031. PubMed ID: 32257353
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Recovery of constitutive immune function after migratory endurance flight in free-living birds.
    Eikenaar C; Ostolani A; Hessler S; Ye EY; Hegemann A
    Biol Lett; 2023 Feb; 19(2):20220518. PubMed ID: 36789532
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Endocrine regulation of migratory departure from stopover: Evidence from a longitudinal migratory restlessness study on northern wheatears.
    Eikenaar C; Müller F; Rüppel G; Stöwe M
    Horm Behav; 2018 Mar; 99():9-13. PubMed ID: 29408015
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Stopovers Serve Physiological Recovery in Migratory Songbirds.
    Eikenaar C; Ostolani A; Hessler S; Ye EY; Karwinkel T; Isaksson C
    Physiol Biochem Zool; 2023; 96(5):378-389. PubMed ID: 37713714
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Size and accumulation of fuel reserves at stopover predict nocturnal restlessness in a migratory bird.
    Eikenaar C; Schläfke JL
    Biol Lett; 2013; 9(6):20130712. PubMed ID: 24132097
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Corticosterone and migratory fueling in Northern wheatears facing different barrier crossings.
    Eikenaar C; Fritzsch A; Bairlein F
    Gen Comp Endocrinol; 2013 Jun; 186():181-6. PubMed ID: 23518480
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Stopover optimization in a long-distance migrant: the role of fuel load and nocturnal take-off time in Alaskan northern wheatears (Oenanthe oenanthe).
    Schmaljohann H; Korner-Nievergelt F; Naef-Daenzer B; Nagel R; Maggini I; Bulte M; Bairlein F
    Front Zool; 2013 May; 10(1):26. PubMed ID: 23663358
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The oxidative balance and stopover departure decisions in a medium- and a long-distance migrant.
    Eikenaar C; Ostolani A; Brust V; Karwinkel T; Schmaljohann H; Isaksson C
    Mov Ecol; 2023 Feb; 11(1):7. PubMed ID: 36747277
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Understanding the ecological and evolutionary function of stopover in migrating birds.
    Schmaljohann H; Eikenaar C; Sapir N
    Biol Rev Camb Philos Soc; 2022 Aug; 97(4):1231-1252. PubMed ID: 35137518
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Constitutive immune function is not associated with fuel stores in spring migrating passerine birds.
    Ronanki S; Hegemann A; Eikenaar C
    Ecol Evol; 2024 Jun; 14(6):e11516. PubMed ID: 38932964
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Not just fuel: energy stores are correlated with immune function and oxidative damage in a long-distance migrant.
    Eikenaar C; Hegemann A; Packmor F; Kleudgen I; Isaksson C
    Curr Zool; 2020 Feb; 66(1):21-28. PubMed ID: 32467701
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Immune function and blood parasite infections impact stopover ecology in passerine birds.
    Hegemann A; Alcalde Abril P; Muheim R; Sjöberg S; Alerstam T; Nilsson JÅ; Hasselquist D
    Oecologia; 2018 Dec; 188(4):1011-1024. PubMed ID: 30386941
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A mimicked bacterial infection prolongs stopover duration in songbirds-but more pronounced in short- than long-distance migrants.
    Hegemann A; Alcalde Abril P; Sjöberg S; Muheim R; Alerstam T; Nilsson JÅ; Hasselquist D
    J Anim Ecol; 2018 Nov; 87(6):1698-1708. PubMed ID: 30101481
    [TBL] [Abstract][Full Text] [Related]  

  • 14. During stopover, migrating blackcaps adjust behavior and intake of food depending on the content of protein in their diets.
    Aamidor SE; Bauchinger U; Mizrahy O; McWilliams SR; Pinshow B
    Integr Comp Biol; 2011 Sep; 51(3):385-93. PubMed ID: 21705790
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Diel variation in corticosterone and departure decision making in migrating birds.
    Eikenaar C; Schäfer J; Hessler S; Packmor F; Schmaljohann H
    Horm Behav; 2020 Jun; 122():104746. PubMed ID: 32217064
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Migrating songbirds on stopover prepare for, and recover from, oxidative challenges posed by long-distance flight.
    Skrip MM; Bauchinger U; Goymann W; Fusani L; Cardinale M; Alan RR; McWilliams SR
    Ecol Evol; 2015 Aug; 5(15):3198-209. PubMed ID: 26355277
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The amount of available food affects diurnal locomotor activity in migratory songbirds during stopover.
    Ferretti A; Maggini I; Lupi S; Cardinale M; Fusani L
    Sci Rep; 2019 Dec; 9(1):19027. PubMed ID: 31836848
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Consequences of migratory distance, habitat distribution and season on the migratory process in a short distance migratory shorebird population.
    Hedh L; Hedenström A
    Mov Ecol; 2023 Jul; 11(1):40. PubMed ID: 37464409
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nocturnal departure timing in songbirds facing distinct migratory challenges.
    Müller F; Eikenaar C; Crysler ZJ; Taylor PD; Schmaljohann H
    J Anim Ecol; 2018 Jul; 87(4):1102-1115. PubMed ID: 29504627
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A place to land: spatiotemporal drivers of stopover habitat use by migrating birds.
    Cohen EB; Horton KG; Marra PP; Clipp HL; Farnsworth A; Smolinsky JA; Sheldon D; Buler JJ
    Ecol Lett; 2021 Jan; 24(1):38-49. PubMed ID: 33026159
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.