These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

425 related articles for article (PubMed ID: 32257942)

  • 1. Lactate Beyond a Waste Metabolite: Metabolic Affairs and Signaling in Malignancy.
    Baltazar F; Afonso J; Costa M; Granja S
    Front Oncol; 2020; 10():231. PubMed ID: 32257942
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Monocarboxylate transporters in cancer.
    Payen VL; Mina E; Van Hée VF; Porporato PE; Sonveaux P
    Mol Metab; 2020 Mar; 33():48-66. PubMed ID: 31395464
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Proton-coupled monocarboxylate transporters in cancer: From metabolic crosstalk, immunosuppression and anti-apoptosis to clinical applications.
    Duan Q; Zhang S; Wang Y; Lu D; Sun Y; Wu Y
    Front Cell Dev Biol; 2022; 10():1069555. PubMed ID: 36506099
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Lactate and Lactate Transporters as Key Players in the Maintenance of the Warburg Effect.
    Pereira-Nunes A; Afonso J; Granja S; Baltazar F
    Adv Exp Med Biol; 2020; 1219():51-74. PubMed ID: 32130693
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Lactate/GPR81 signaling and proton motive force in cancer: Role in angiogenesis, immune escape, nutrition, and Warburg phenomenon.
    Brown TP; Ganapathy V
    Pharmacol Ther; 2020 Feb; 206():107451. PubMed ID: 31836453
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The lactate sensor GPR81 regulates glycolysis and tumor growth of breast cancer.
    Ishihara S; Hata K; Hirose K; Okui T; Toyosawa S; Uzawa N; Nishimura R; Yoneda T
    Sci Rep; 2022 Apr; 12(1):6261. PubMed ID: 35428832
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Lactate in the Regulation of Tumor Microenvironment and Therapeutic Approaches.
    de la Cruz-López KG; Castro-Muñoz LJ; Reyes-Hernández DO; García-Carrancá A; Manzo-Merino J
    Front Oncol; 2019; 9():1143. PubMed ID: 31737570
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Therapeutic Targeting of Tumor Cells and Tumor Immune Microenvironment Vulnerabilities.
    Kalyanaraman B; Cheng G; Hardy M
    Front Oncol; 2022; 12():816504. PubMed ID: 35756631
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Role of Proton-Coupled Monocarboxylate Transporters in Cancer: From Metabolic Crosstalk to Therapeutic Potential.
    Sun X; Wang M; Wang M; Yao L; Li X; Dong H; Li M; Sun T; Liu X; Liu Y; Xu Y
    Front Cell Dev Biol; 2020; 8():651. PubMed ID: 32766253
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Targeting monocarboxylate transporters (MCTs) in cancer: How close are we to the clinics?
    Singh M; Afonso J; Sharma D; Gupta R; Kumar V; Rani R; Baltazar F; Kumar V
    Semin Cancer Biol; 2023 May; 90():1-14. PubMed ID: 36706846
    [TBL] [Abstract][Full Text] [Related]  

  • 11. From Warburg effect to Reverse Warburg effect; the new horizons of anti-cancer therapy.
    Benny S; Mishra R; Manojkumar MK; Aneesh TP
    Med Hypotheses; 2020 Nov; 144():110216. PubMed ID: 33254523
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Monocarboxylate transporter 1 is a key player in glioma-endothelial cell crosstalk.
    Miranda-Gonçalves V; Bezerra F; Costa-Almeida R; Freitas-Cunha M; Soares R; Martinho O; Reis RM; Pinheiro C; Baltazar F
    Mol Carcinog; 2017 Dec; 56(12):2630-2642. PubMed ID: 28762551
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Multiple biological activities of lactic acid in cancer: influences on tumor growth, angiogenesis and metastasis.
    Dhup S; Dadhich RK; Porporato PE; Sonveaux P
    Curr Pharm Des; 2012; 18(10):1319-30. PubMed ID: 22360558
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Lactate shuttles at a glance: from physiological paradigms to anti-cancer treatments.
    Draoui N; Feron O
    Dis Model Mech; 2011 Nov; 4(6):727-32. PubMed ID: 22065843
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Monocarboxylate transporters in the brain and in cancer.
    Pérez-Escuredo J; Van Hée VF; Sboarina M; Falces J; Payen VL; Pellerin L; Sonveaux P
    Biochim Biophys Acta; 2016 Oct; 1863(10):2481-97. PubMed ID: 26993058
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Lactate Contribution to the Tumor Microenvironment: Mechanisms, Effects on Immune Cells and Therapeutic Relevance.
    Romero-Garcia S; Moreno-Altamirano MM; Prado-Garcia H; Sánchez-García FJ
    Front Immunol; 2016; 7():52. PubMed ID: 26909082
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evidence for a stromal-epithelial "lactate shuttle" in human tumors: MCT4 is a marker of oxidative stress in cancer-associated fibroblasts.
    Whitaker-Menezes D; Martinez-Outschoorn UE; Lin Z; Ertel A; Flomenberg N; Witkiewicz AK; Birbe RC; Howell A; Pavlides S; Gandara R; Pestell RG; Sotgia F; Philp NJ; Lisanti MP
    Cell Cycle; 2011 Jun; 10(11):1772-83. PubMed ID: 21558814
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The metabolic interactions between tumor cells and tumor-associated stroma (TAS) in prostatic cancer.
    Giatromanolaki A; Koukourakis MI; Koutsopoulos A; Mendrinos S; Sivridis E
    Cancer Biol Ther; 2012 Nov; 13(13):1284-9. PubMed ID: 22895074
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Reexamining cancer metabolism: lactate production for carcinogenesis could be the purpose and explanation of the Warburg Effect.
    San-Millán I; Brooks GA
    Carcinogenesis; 2017 Feb; 38(2):119-133. PubMed ID: 27993896
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Hodgkin lymphoma: A complex metabolic ecosystem with glycolytic reprogramming of the tumor microenvironment.
    Mikkilineni L; Whitaker-Menezes D; Domingo-Vidal M; Sprandio J; Avena P; Cotzia P; Dulau-Florea A; Gong J; Uppal G; Zhan T; Leiby B; Lin Z; Pro B; Sotgia F; Lisanti MP; Martinez-Outschoorn U
    Semin Oncol; 2017 Jun; 44(3):218-225. PubMed ID: 29248133
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 22.